ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Nanostructured Carbon Electron Emitters and Their Applications

دانلود کتاب انتشار دهنده های الکترون کربن نانوساختار و کاربردهای آنها

Nanostructured Carbon Electron Emitters and Their Applications

مشخصات کتاب

Nanostructured Carbon Electron Emitters and Their Applications

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9789814877626, 9781003141990 
ناشر: Jenny Stanford Publishing 
سال نشر: 2022 
تعداد صفحات: 373
[374] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 40 Mb 

قیمت کتاب (تومان) : 54,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 10


در صورت تبدیل فایل کتاب Nanostructured Carbon Electron Emitters and Their Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب انتشار دهنده های الکترون کربن نانوساختار و کاربردهای آنها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب انتشار دهنده های الکترون کربن نانوساختار و کاربردهای آنها

این کتاب پیشرفت‌های اخیر تحقیقات در زمینه تابش‌کننده‌های الکترون میدان نانو کربن را از خواص بنیادی گرفته تا کاربردهای امیدوارکننده، به‌عنوان مثال، منابع پرتو ایکس، دستگاه‌های الکترونیکی خلاء، رانشگرهای فضایی و غیره توصیف می‌کند.


توضیحاتی درمورد کتاب به خارجی

This book describes recent progress of researches on nanocarbon field electron emitters ranging from fundamental properties to promising applications, e.g., X-ray sources, vacuum electronic devices, space thrusters and so on.



فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Table of Contents
Preface
Chapter 1: FEM and FIM of Carbon Nanotubes
	1.1: Structure of CNT and Electron Emission Properties
	1.2: FEM of CNT
		1.2.1: MWCNT with a Closed Cap
		1.2.2: Thin MWCNT with a Cone-Shaped Tip
		1.2.3: SWCNTs
		1.2.4: MWCNT with an Open Tip
	1.3: Energy Spectra of Emitted Electrons
	1.4: Field-Emission Study of CNT in TEM
	1.5: FIM of CNT
		1.5.1: Capped MWCNT
		1.5.2: Broken Tip and Open-Ended MWCNT
		1.5.3: SWCNT and DWCNT Bundles
	1.6: Summary and Conclusion
Chapter 2: Electromechanical Self‐Oscillations  of Carbon Field Emitters
	2.1: Introduction
	2.2: Introduction to Electromechanical Self-Oscillators
		2.2.1: Self-Oscillation
		2.2.2: General Model of Self-Oscillations: The Van der Pol Oscillator
		2.2.3: Specificity of the Single Clamped Field-Emission Geometry
	2.3: Self-Oscillations of Individual Carbon Nano-emitters
		2.3.1: First Observations
			2.3.1.1: The “head-shaking” effect
			2.3.1.2: Self-oscillations on SWCNT
		2.3.2: Characterization of Nano-electromechanical Self-Oscillating Field Emitters
			2.3.2.1: Self-sustained oscillations in an electronic microscope
			2.3.2.2: Self-oscillations in an ultrahigh vacuum environment
		2.3.3: Toward Large Scale Integration
	2.4: Self-Oscillation for Large Carbon Emitters
		2.4.1: Self-Oscillations from Assembly of Nanotubes
		2.4.2: Very High Current with Carbon Fiber Self-Oscillators
	2.5: Conclusion
Chapter 3: Performance of Point-Typed Carbon Nanotube Field Emitters
	3.1: Introduction
	3.2: Point-Typed CNT Field Emitter Made of a CNT Bundle
	3.3: Point-Typed CNT Field Emitter Made of a CNT Yarn
	3.4: Point-Typed CNT Field Emitter Made of a CNT Film
	3.5: Point-Typed CNT Field Emitter Fabricated by CNT Paste
	3.6: Point-Typed CNT Field Emitter Made of a Free-standing CNT Film
	3.7: Summary
Chapter 4: Theoretical Field-Emission Patterns from Carbon Nanotubes
	4.1: Introduction
	4.2: Field-Emission Patterns from CNTs Calculated Using TD-DFT
		4.2.1: TD-DFT
		4.2.2: Method and Computational Details
		4.2.3: Results and Discussion
	4.3: Field-Emission Patterns from CNT Calculated Using DFT
		4.3.1: Theoretical Models for Calculating Field-Emission Patterns
		4.3.2: Method and Computing Details
		4.3.3: Results and Discussions
	4.4: Conclusion
Chapter 5: Heat Localization and Thermionic Emission from Carbon Nanotubes
	5.1: Introduction
	5.2: Thermionic Emission from Carbon Nanotubes
	5.3: Heat Localization in Carbon Nanotube Forests Leading to Thermionic Emission
		5.3.1: The Heat Trap Effect
		5.3.2: The Effect of Photon Wavelength and Combined Multiphoton Thermal Photoemission
		5.3.3: The Effect of Polarization and Temporal Behavior
		5.3.4: The Mechanism of Heat Localization
		5.3.5: Applications of Thermionic Emission Due to Heat Trap
	5.4: Conclusion and Outlook: The Future of Thermionic Emission from Carbon Nanotubes
	5.5: Acknowledgments
Chapter 6: Field Emission from the Edges of Single-Layer Graphene
	6.1: Introduction
	6.2: Survey of Theoretical Work
	6.3: Survey of Experimental Work
	6.4: UHV Studies of Free-Standing, Individual, Cleaned, Graphene Flakes
	6.5: Summary and Perspectives
Chapter 7: FEM and FIM of Graphene
	7.1: Introduction
	7.2: FEM of Graphene
		7.2.1: Preparation of Graphene Emitter
		7.2.2: “Lip” Pattern Typical of Graphene Field Emitter
		7.2.3: Change of FEM Images from “Lip” to Dim Pattern
		7.2.4: Origin of “Lip” Pattern
		7.2.5: Frequent Encounter of “Lip” Patterns in Graphene-Related Materials
	7.3: FIM of Graphene
		7.3.1: FIM Images of Graphene
		7.3.2: Historic Survey of Graphite FIM
	7.4: Conclusion
Chapter 8: Spin-Polarized Field-Emitted Electrons from Graphene Oxide Edges
	8.1: Introduction
	8.2: Experimental Method
	8.3: Spin Polarization at Edges of Graphene Oxide
	8.4: Change in Spin Polarization Due to Adsorption
	8.5: Conclusion and Remarks
Chapter 9: Theoretical Coherent Field Emission of Graphene
	9.1: Coherent Cold Field Emission
	9.2: Graphene Emitter with a Uniform Edge
	9.3: Path-Decomposition Approach
	9.4: CFE Patterns of Graphene
		9.4.1: Quantum States
		9.4.2: Emission Waves and Patterns
	9.5: Discussions and Summary
Chapter 10: Influence of Edge Structures of Graphene on Field-Emission Properties
	10.1: Introduction
	10.2: Theoretical Procedures
	10.3: Structural Models
	10.4: Edge-Shape Effect on the Field-Emission Property of Graphene
	10.5: Edge-Functionalization Effect on the Field-Emission Property of Graphene
	10.6: Conclusion
Chapter 11: Theory of Thermionic Electron Emission for 2D Materials
	11.1: Introduction
	11.2: Thermionic Emission
	11.3: Field Emission
	11.4: Thermionic Emission Models for 2D Materials
		11.4.1: Motivation
		11.4.2: General Formalism of Electron Emission in 2D Materials
		11.4.3: Dirac Cone Model of Graphene
		11.4.4: Graphene Vertical Thermionic Emission: k||-Conserving Model
		11.4.5: Graphene Vertical Thermionic Emission: k||-Nonconserving Model
		11.4.6: Graphene Vertical Thermionic Emission at  High-Energy Regime
		11.4.7: Universal Thermionic Emission Model
	11.5: Conclusion and Outlooks
Chapter 12: Direct Grown Vertically Full Aligned Carbon Nanotube Electron Emitters for X-Ray and UV Devices
	12.1: Introduction
	12.2: Synthesis of Vertically Aligned Carbon Nanotube Arrays
	12.3: Carbon Nanotube as a Cold Cathode
		12.3.1: Diode-Based FE Device Structure with CNT Cold Cathodes
		12.3.2: Triode-Based FE Device Structure with CNT Cold Cathodes
			12.3.2.1: The effect of alignment of CNT emitter to gate electrode
			12.3.2.2: The effect of thermal stability of gate electrode
	12.4: X-Ray Imaging with C-Beam
	12.5: UV Irradiative Applications with C-Beam
	12.6: Summary
Chapter 13: Development of CNT X-Ray Technology for Medical and Dental Imaging
	13.1: Introduction
		13.1.1: Conventional Thermionic X-Ray
		13.1.2: Field-Emission X-Ray
		13.1.3: CNT Field-Emission X-Ray
	13.2: CNT X-Ray Devices
		13.2.1: CNT Cathode
		13.2.2: Single-Beam CNT X-Ray Source
		13.2.3: Spatially Distributed CNT X-Ray Source Array
	13.3: Medical and Dental Imaging Applications
		13.3.1: Motivation
		13.3.2: CNT X-Ray-Based Stationary Digital Tomosynthesis
			13.3.2.1: Detection of breast cancer
			13.3.2.2: Chest imaging
			13.3.2.3: Dental imaging
	13.4: Conclusions
Chapter 14: Graphene Cold Field-Emission Sources for Electron Microscopy Applications
	14.1: Introduction
	14.2: Work Function
	14.3: Energy Distribution
		14.3.1: Theoretical Background
		14.3.2: Statistical Coulomb Interactions
		14.3.3: Measured Values of the FWHM Energy Spread for the Graphene Cold Field Electron
	14.4: Source Electron Optics
	14.5: Current Fluctuations
		14.5.1: Short-Term Current Fluctuations
		14.5.2: Long-Term Current Drift
	14.6: Summary
Chapter 15: CNT Field-Emission Cathode for Space Applications
	15.1: Introduction
	15.2: Overview of KITE
	15.3: CNT Cathode for KITE
		15.3.1: CNT Cathode Module
		15.3.2: Structure and Characteristics of CNT Cathode
		15.3.3: Electrical Circuit and Operation of CNT Cathode
		15.3.4: Unique Treatment for Use in Space
			15.3.4.1: Consideration of atomic oxygen in low Earth orbit
			15.3.4.2: Tolerance to mechanical and thermal environments
	15.4: Results and Findings of On-Orbit Operation of CNT Cathodes
		15.4.1: Overview of Cathode Operation
		15.4.2: I–V Characteristics and Tolerance to Atomic Oxygen Environment On-Orbit
		15.4.3: Electron Emission Behavior to Ambient Space Plasma
	15.5: Next Steps
	15.6: Conclusion
Chapter 16: Growth of Long Linear Carbon Chains after Serious Field Emission from a CNT Film
	16.1: Introduction
	16.2: Field Electron Emission Accompanied with Electrical Discharge for Single-Wall Carbon Nanotube Films
	16.3: Long Linear Carbon Chains in Single-Wall Carbon Nanotube Films after Electrical Discharge
	16.4: Conclusions
Chapter 17: Emission of C20+ by Field Evaporation from CNT
	17.1: Introduction
	17.2: Field Evaporation of Carbon Ions from CNT Under High Electric Field
	17.3: Magic Cluster Ion, C20+, in Field Evaporation Mass Spectra
	17.4: Other Evidences of the Existence of C20 Clusters in Gas Phase
	17.5: Conclusion
Index




نظرات کاربران