دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Yahachi Saito
سری:
ISBN (شابک) : 9789814877626, 9781003141990
ناشر: Jenny Stanford Publishing
سال نشر: 2022
تعداد صفحات: 373
[374]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 40 Mb
در صورت تبدیل فایل کتاب Nanostructured Carbon Electron Emitters and Their Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب انتشار دهنده های الکترون کربن نانوساختار و کاربردهای آنها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب پیشرفتهای اخیر تحقیقات در زمینه تابشکنندههای الکترون میدان نانو کربن را از خواص بنیادی گرفته تا کاربردهای امیدوارکننده، بهعنوان مثال، منابع پرتو ایکس، دستگاههای الکترونیکی خلاء، رانشگرهای فضایی و غیره توصیف میکند.
This book describes recent progress of researches on nanocarbon field electron emitters ranging from fundamental properties to promising applications, e.g., X-ray sources, vacuum electronic devices, space thrusters and so on.
Cover Half Title Title Page Copyright Page Table of Contents Preface Chapter 1: FEM and FIM of Carbon Nanotubes 1.1: Structure of CNT and Electron Emission Properties 1.2: FEM of CNT 1.2.1: MWCNT with a Closed Cap 1.2.2: Thin MWCNT with a Cone-Shaped Tip 1.2.3: SWCNTs 1.2.4: MWCNT with an Open Tip 1.3: Energy Spectra of Emitted Electrons 1.4: Field-Emission Study of CNT in TEM 1.5: FIM of CNT 1.5.1: Capped MWCNT 1.5.2: Broken Tip and Open-Ended MWCNT 1.5.3: SWCNT and DWCNT Bundles 1.6: Summary and Conclusion Chapter 2: Electromechanical Self‐Oscillations of Carbon Field Emitters 2.1: Introduction 2.2: Introduction to Electromechanical Self-Oscillators 2.2.1: Self-Oscillation 2.2.2: General Model of Self-Oscillations: The Van der Pol Oscillator 2.2.3: Specificity of the Single Clamped Field-Emission Geometry 2.3: Self-Oscillations of Individual Carbon Nano-emitters 2.3.1: First Observations 2.3.1.1: The “head-shaking” effect 2.3.1.2: Self-oscillations on SWCNT 2.3.2: Characterization of Nano-electromechanical Self-Oscillating Field Emitters 2.3.2.1: Self-sustained oscillations in an electronic microscope 2.3.2.2: Self-oscillations in an ultrahigh vacuum environment 2.3.3: Toward Large Scale Integration 2.4: Self-Oscillation for Large Carbon Emitters 2.4.1: Self-Oscillations from Assembly of Nanotubes 2.4.2: Very High Current with Carbon Fiber Self-Oscillators 2.5: Conclusion Chapter 3: Performance of Point-Typed Carbon Nanotube Field Emitters 3.1: Introduction 3.2: Point-Typed CNT Field Emitter Made of a CNT Bundle 3.3: Point-Typed CNT Field Emitter Made of a CNT Yarn 3.4: Point-Typed CNT Field Emitter Made of a CNT Film 3.5: Point-Typed CNT Field Emitter Fabricated by CNT Paste 3.6: Point-Typed CNT Field Emitter Made of a Free-standing CNT Film 3.7: Summary Chapter 4: Theoretical Field-Emission Patterns from Carbon Nanotubes 4.1: Introduction 4.2: Field-Emission Patterns from CNTs Calculated Using TD-DFT 4.2.1: TD-DFT 4.2.2: Method and Computational Details 4.2.3: Results and Discussion 4.3: Field-Emission Patterns from CNT Calculated Using DFT 4.3.1: Theoretical Models for Calculating Field-Emission Patterns 4.3.2: Method and Computing Details 4.3.3: Results and Discussions 4.4: Conclusion Chapter 5: Heat Localization and Thermionic Emission from Carbon Nanotubes 5.1: Introduction 5.2: Thermionic Emission from Carbon Nanotubes 5.3: Heat Localization in Carbon Nanotube Forests Leading to Thermionic Emission 5.3.1: The Heat Trap Effect 5.3.2: The Effect of Photon Wavelength and Combined Multiphoton Thermal Photoemission 5.3.3: The Effect of Polarization and Temporal Behavior 5.3.4: The Mechanism of Heat Localization 5.3.5: Applications of Thermionic Emission Due to Heat Trap 5.4: Conclusion and Outlook: The Future of Thermionic Emission from Carbon Nanotubes 5.5: Acknowledgments Chapter 6: Field Emission from the Edges of Single-Layer Graphene 6.1: Introduction 6.2: Survey of Theoretical Work 6.3: Survey of Experimental Work 6.4: UHV Studies of Free-Standing, Individual, Cleaned, Graphene Flakes 6.5: Summary and Perspectives Chapter 7: FEM and FIM of Graphene 7.1: Introduction 7.2: FEM of Graphene 7.2.1: Preparation of Graphene Emitter 7.2.2: “Lip” Pattern Typical of Graphene Field Emitter 7.2.3: Change of FEM Images from “Lip” to Dim Pattern 7.2.4: Origin of “Lip” Pattern 7.2.5: Frequent Encounter of “Lip” Patterns in Graphene-Related Materials 7.3: FIM of Graphene 7.3.1: FIM Images of Graphene 7.3.2: Historic Survey of Graphite FIM 7.4: Conclusion Chapter 8: Spin-Polarized Field-Emitted Electrons from Graphene Oxide Edges 8.1: Introduction 8.2: Experimental Method 8.3: Spin Polarization at Edges of Graphene Oxide 8.4: Change in Spin Polarization Due to Adsorption 8.5: Conclusion and Remarks Chapter 9: Theoretical Coherent Field Emission of Graphene 9.1: Coherent Cold Field Emission 9.2: Graphene Emitter with a Uniform Edge 9.3: Path-Decomposition Approach 9.4: CFE Patterns of Graphene 9.4.1: Quantum States 9.4.2: Emission Waves and Patterns 9.5: Discussions and Summary Chapter 10: Influence of Edge Structures of Graphene on Field-Emission Properties 10.1: Introduction 10.2: Theoretical Procedures 10.3: Structural Models 10.4: Edge-Shape Effect on the Field-Emission Property of Graphene 10.5: Edge-Functionalization Effect on the Field-Emission Property of Graphene 10.6: Conclusion Chapter 11: Theory of Thermionic Electron Emission for 2D Materials 11.1: Introduction 11.2: Thermionic Emission 11.3: Field Emission 11.4: Thermionic Emission Models for 2D Materials 11.4.1: Motivation 11.4.2: General Formalism of Electron Emission in 2D Materials 11.4.3: Dirac Cone Model of Graphene 11.4.4: Graphene Vertical Thermionic Emission: k||-Conserving Model 11.4.5: Graphene Vertical Thermionic Emission: k||-Nonconserving Model 11.4.6: Graphene Vertical Thermionic Emission at High-Energy Regime 11.4.7: Universal Thermionic Emission Model 11.5: Conclusion and Outlooks Chapter 12: Direct Grown Vertically Full Aligned Carbon Nanotube Electron Emitters for X-Ray and UV Devices 12.1: Introduction 12.2: Synthesis of Vertically Aligned Carbon Nanotube Arrays 12.3: Carbon Nanotube as a Cold Cathode 12.3.1: Diode-Based FE Device Structure with CNT Cold Cathodes 12.3.2: Triode-Based FE Device Structure with CNT Cold Cathodes 12.3.2.1: The effect of alignment of CNT emitter to gate electrode 12.3.2.2: The effect of thermal stability of gate electrode 12.4: X-Ray Imaging with C-Beam 12.5: UV Irradiative Applications with C-Beam 12.6: Summary Chapter 13: Development of CNT X-Ray Technology for Medical and Dental Imaging 13.1: Introduction 13.1.1: Conventional Thermionic X-Ray 13.1.2: Field-Emission X-Ray 13.1.3: CNT Field-Emission X-Ray 13.2: CNT X-Ray Devices 13.2.1: CNT Cathode 13.2.2: Single-Beam CNT X-Ray Source 13.2.3: Spatially Distributed CNT X-Ray Source Array 13.3: Medical and Dental Imaging Applications 13.3.1: Motivation 13.3.2: CNT X-Ray-Based Stationary Digital Tomosynthesis 13.3.2.1: Detection of breast cancer 13.3.2.2: Chest imaging 13.3.2.3: Dental imaging 13.4: Conclusions Chapter 14: Graphene Cold Field-Emission Sources for Electron Microscopy Applications 14.1: Introduction 14.2: Work Function 14.3: Energy Distribution 14.3.1: Theoretical Background 14.3.2: Statistical Coulomb Interactions 14.3.3: Measured Values of the FWHM Energy Spread for the Graphene Cold Field Electron 14.4: Source Electron Optics 14.5: Current Fluctuations 14.5.1: Short-Term Current Fluctuations 14.5.2: Long-Term Current Drift 14.6: Summary Chapter 15: CNT Field-Emission Cathode for Space Applications 15.1: Introduction 15.2: Overview of KITE 15.3: CNT Cathode for KITE 15.3.1: CNT Cathode Module 15.3.2: Structure and Characteristics of CNT Cathode 15.3.3: Electrical Circuit and Operation of CNT Cathode 15.3.4: Unique Treatment for Use in Space 15.3.4.1: Consideration of atomic oxygen in low Earth orbit 15.3.4.2: Tolerance to mechanical and thermal environments 15.4: Results and Findings of On-Orbit Operation of CNT Cathodes 15.4.1: Overview of Cathode Operation 15.4.2: I–V Characteristics and Tolerance to Atomic Oxygen Environment On-Orbit 15.4.3: Electron Emission Behavior to Ambient Space Plasma 15.5: Next Steps 15.6: Conclusion Chapter 16: Growth of Long Linear Carbon Chains after Serious Field Emission from a CNT Film 16.1: Introduction 16.2: Field Electron Emission Accompanied with Electrical Discharge for Single-Wall Carbon Nanotube Films 16.3: Long Linear Carbon Chains in Single-Wall Carbon Nanotube Films after Electrical Discharge 16.4: Conclusions Chapter 17: Emission of C20+ by Field Evaporation from CNT 17.1: Introduction 17.2: Field Evaporation of Carbon Ions from CNT Under High Electric Field 17.3: Magic Cluster Ion, C20+, in Field Evaporation Mass Spectra 17.4: Other Evidences of the Existence of C20 Clusters in Gas Phase 17.5: Conclusion Index