دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Ki-Taek Lim. Kamel A. Abd-Elsalam
سری:
ISBN (شابک) : 3031160835, 9783031160837
ناشر: Springer
سال نشر: 2022
تعداد صفحات: 462
[463]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 23 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Nanorobotics and Nanodiagnostics in Integrative Biology and Biomedicine به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نانورباتیک و نانوتشخیص در زیست شناسی یکپارچه و زیست پزشکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
نانوروباتیک و نانوتشخیص در زیست شناسی و زیست پزشکی
یکپارچه "نانورباتیک و نانوتشخیص" را می توان به عنوان نسل جدیدی
از بیوهیبرید و نانورباتیک تعریف کرد که اصول بنیادی بیولوژیکی را
به قوانین طراحی مهندسی یا اجزای زنده یکپارچه را به ساختارهای
مصنوعی و ایجاد ربات های زیستی زیستی تبدیل می کند. که مانند
سیستمهای طبیعی عمل میکنند.
نانورباتها یا نانورباتها ساختاری در مقیاس نانو دارند که از
مجموعههای جداگانه ساخته شدهاند. آنها را میتوان به عنوان
سیستمهای هوشمندی نامید که با استراتژیهای خود مونتاژ با
رویکردهای شیمیایی، فیزیکی و بیولوژیکی ساخته میشوند.
نانورباتها میتوانند ساختار و ساختار را تعیین کنند. افزایش
سازگاری با محیط در کارهای بین رشته ای.
\"نانورباتیک و نانوتشخیص" نسل جدیدی از بیوهیبرید است که اصول
بنیادی بیولوژیکی را به قوانین طراحی مهندسی تبدیل می کند تا ربات
های زیستی را ایجاد کند که مانند سیستم های طبیعی عمل
کنند.
این بیوروباتیک و تشخیص اکنون می تواند ماموریت های مختلفی را
برای انجام وظایف خاصی در زمینه های تحقیقاتی مانند زیست شناسی
یکپارچه و زیست پزشکی انجام دهد.
\"Nanorobotics and Nanodiagnostics in Integrative Biology and
Biomedicine\" یک نمای کلی جامع از حوزه های چند رشته ای را که
نانودرمانی و دستکاری نانورباتیک را در زیست شناسی و پزشکی کشف می
کند روشن می کند. این دانش بهروز در زمینههای امیدوارکننده
زیستشناسی و زیستپزشکی یکپارچه برای بیوروباتیک و تشخیص به کمک
نانو برای شناسایی و درمان بیماریهایی فراهم میکند که اکتشافات
علمی جدید را ممکن میسازد.
Nanorobotics and Nanodiagnostics in Integrative Biology
and Biomedicine "Nanorobotics and nanodiagnostics” can be
defined as a new generation of biohybrid and nanorobotics that
translate fundamental biological principles into engineering
design rules, or integrative living components into synthetic
structures to create biorobots and nanodiagnotics that perform
like natural systems.
Nanorobots or nanobots are structured of a nanoscale made of
individual assemblies. They can be termed as intelligent
systems manufactured with self-assembly strategies by chemical,
physical and biological approaches. The nanorobot can determine
the structure and enhance the adaptability to the environment
in interdisciplinary tasks.
"Nanorobotics and nanodiagnostics" is a new generation of
biohybrid that translates fundamental biological principles
into engineering design rules to create biorobots that perform
like natural systems.
These biorobotics and diagnostics can now perform various
missions to be accomplished certain tasks in the research areas
such as integrative biology and biomedicine.
"Nanorobotics and Nanodiagnostics in Integrative Biology and
Biomedicine" sheds light on a comprehensive overview of the
multidisciplinary areas that explore nanotherapeutics and
nanorobotic manipulation in biology and medicine. It provides
up-to-date knowledge of the promising fields of integrative
biology and biomedicine for nano-assisted biorobotics and
diagnostics to detect and treat diseases that will enable new
scientific discoveries.
Preface Contents Chapter 1: Nanorobotics and Nanodiagnostics in Integrative Biology and Biomedicine: A Note from the Editors 1.1 Introduction 1.2 Historical Background 1.3 Overview of the Book 1.4 Conclusion References Chapter 2: Nanorobots for Drug Delivery, Surgery, and Biosensing 2.1 Introduction 2.2 Design of Nanorobots 2.3 Application 2.3.1 Drug Delivery 2.3.2 Surgery 2.3.3 Biosensing 2.4 Conclusion References Chapter 3: Biomolecule-Based Nanorobot for Targeted Delivery of Therapeutics 3.1 Introduction 3.2 DNA and Proteins 3.3 CAD Systems for Bio-nanorobotics Simulation 3.4 Biomolecule-Loaded Therapeutic Delivery 3.4.1 Pharmaceuticals 3.4.2 Biologics and Genes 3.4.3 Living Cell-Based Therapies 3.5 Selected Diseases 3.5.1 Cancer 3.5.1.1 Diabetes 3.5.1.2 Hemorrhage Treatment 3.6 Challenges and Prospects References Chapter 4: Printable Nanorobots and Microswimmers for Therapeutic Advancement: Present Status and Future Opportunities 4.1 Introduction 4.2 Overview of 3D Printing Techniques for Nanorobot Fabrication 4.2.1 Powder-Bed Fusion 4.2.2 Vat Polymerization 4.2.3 Inkjet Printing 4.2.4 Extrusion and Direct-Ink-Writing Printing 4.2.5 Direct Laser Writing Printing 4.3 Materials for 3D Printing of Micro-/Nanomotors 4.4 Shape Reconfiguration for Tunable Multifunctionality 4.5 Types of Nanomotors and Their Function 4.5.1 Helical Micro-/Nanoswimmers 4.5.2 Tubular Micro-/Nanoswimmers 4.5.3 Micro-/Nanomotors with Mixed Functions 4.6 Propulsion Mechanism of Nanomotors 4.6.1 Chemical and Biological Propulsion 4.6.2 Magnetic Propulsion 4.6.3 Ultrasonic Propulsion 4.7 Therapeutic Applications 4.8 Key Challenges and Future Outlook 4.9 Concluding Remarks References Chapter 5: Fundamental in Polymer-/Nanohybrid-Based Nanorobotics for Theranostics 5.1 Introduction 5.2 Polymers 5.2.1 Natural Polymers 5.2.1.1 Alginate 5.2.1.2 Collagen 5.2.1.3 Chitosan 5.2.1.4 Gelatin 5.2.1.5 Hyaluronic Acid (HA) 5.2.2 Synthetic Biopolymer 5.2.2.1 Polycaprolactone (PCL) 5.2.2.2 Poly(D,L-Lactic-co-Glycolic Acid) (PLGA) 5.2.2.3 Polyethylene Glycol 5.3 Fabrication of Theranostic Nanorobots 5.3.1 Magnetic Nanoparticle-Based Theranostics 5.3.2 Micelles 5.3.3 Dendrimers 5.3.4 Nanogels 5.3.5 Hybrid Conjugates 5.4 Bioconjugation Process 5.5 Application in Theranostics 5.5.1 Cancer Diagnosis and Therapy 5.5.2 Bacterial Infections and Wound Healing 5.6 Conclusion References Chapter 6: Magneto-Responsive Nanohybrids for Bioimaging 6.1 Introduction 6.2 Nanohybrids 6.2.1 Carbon-Carbon NHs 6.2.2 Carbon-Metal NHs 6.2.3 Metal-Metal NHs 6.2.4 Organic Molecule-Coated NHs 6.2.4.1 Synthesis of Polymeric Nanocapsules (NCs) 6.2.4.2 Lipid-Based NHs 6.2.4.3 Cellulose-Supported Magnetic NHs 6.2.5 Virus Nanoparticles (VNPs) 6.3 Characterizations of Nanohybrids 6.3.1 ICP-MS and ICP-OES 6.3.2 EDS 6.3.3 SEM and TEM 6.3.4 XRD 6.3.5 Magnetic Properties of Nanohybrids 6.4 Conclusion References Chapter 7: Photothermal Nanomaterials for Wound Monitoring and Cancer Biomedicine 7.1 Introduction 7.2 Photothermal Nanomaterials: Application for Wound Healing and Monitoring 7.2.1 Photothermal and Photodynamic Therapy for Wound Healing 7.2.2 Photothermal Nanomaterials for Skin Wound Healing 7.2.3 Photothermal Nanomaterials for Bone and Cartilage Defects 7.3 Photothermal Nanomaterials: Applications for Cancer Biomedicine 7.3.1 Photothermal Therapy Using Metal Nanomaterials 7.3.2 Photothermal Therapy Using Semiconductor Nanomaterials 7.3.3 Photothermal Therapy Using Carbon-Based Nanomaterials 7.3.4 Photothermal Therapy Using Conducting Polymers 7.4 Limitations and Future Prospect 7.5 Conclusion References Chapter 8: Polymer Nanohybrid-Based Smart Platforms for Controlled Delivery and Wound Management 8.1 Introduction 8.2 Classification of the Polymers 8.2.1 Natural Polymers 8.2.2 Synthetic Polymers 8.3 Kinds of Nanomaterials 8.3.1 0D and 1D Nanomaterials 8.3.2 2D and 3D Nanomaterials 8.4 Application of Polymer Nanohybrid-Based Smart Platforms 8.4.1 Delivery of Active Molecules 8.4.2 Wound Management 8.5 Conclusion References Chapter 9: Development of Efficient Strategies for Physical Stimuli-Responsive Programmable Nanotherapeutics 9.1 Introduction 9.2 Stimuli-Responsive Nanomaterials 9.2.1 Temperature-Responsive Nanomaterial 9.2.1.1 Programming with Different Thermoresponsive Chemical Compounds 9.2.1.2 LCST Programming for Thermal Targeting and Controlled Release Programming with Different Architecture Programming with Additional Functional Groups Photo-responsive Nanomaterials Programming with Different Basic Chemistry That Is Light-Responsive Programming with Additional Functional Groups 9.2.2 Ultrasound-Responsive Materials 9.2.2.1 Programming Using Basic Chemistry for Ultrasound-Responsive Materials 9.2.2.2 Programming with Functional Groups on Nanomaterials 9.2.3 Magnetic Field-Responsive Nanomaterials 9.2.3.1 Programming Using the Magnetic Field-Responsive Chemical Compounds 9.2.3.2 Programming After Modification with Different Functional Groups Electroresponsive Nanomaterials Programming Using Different Chemical Modification Programming After Modification with Different Functional Groups 9.3 Concluding Remarks and Future Perspectives References Chapter 10: The Flexible and Wearable Pressure Sensing Microsystems for Medical Diagnostics 10.1 Introduction 10.2 Materials 10.2.1 Substrate Materials 10.2.2 Active Materials 10.3 Fundamentals of Pressure Sensors 10.3.1 Sensing Mechanisms 10.3.1.1 Piezoresistivity 10.3.1.2 Capacitance 10.3.1.3 Piezoelectricity 10.3.1.4 Triboelectricity 10.3.2 Key Parameters of Pressure Sensor 10.3.2.1 Sensitivity 10.3.2.2 Power Consumption 10.3.2.3 Other Key Parameters 10.4 Applications for Flexible Pressure Sensors 10.4.1 Detecting Heart Rate or Pulse 10.4.2 Detecting Pressure In Vivo 10.4.3 Gait Monitoring 10.4.4 Recognition of Sound Signal 10.4.5 Breath Detection 10.4.6 Tactile Perception 10.5 Conclusions and Perspectives References Chapter 11: Microfluidics and Lab-on-a-Chip for Biomedical Applications 11.1 Introduction 11.2 Fabrication of Microfluidic System 11.3 Significance of Nonlinear Process in Microfluidics 11.4 Significance of Microfluidic Systems 11.5 Biomedical Applications 11.5.1 Organs-on-Chips (OoCs) 11.5.2 Lung-on-a-Chip (LuoC) 11.5.3 Brain-on-a-Chip (BoC) 11.5.4 Joint/Muscle-on-a-Chip (JoC) and Human-on-a-Chip (HoC) 11.6 Conclusion and Future Perspectives References Chapter 12: Lab-on-a-Chip Devices for Medical Diagnosis II: Strategies for Pathogen Detection 12.1 Introduction 12.2 LoC Fabrication for Medical Diagnosis 12.3 Pathogen Diagnosis 12.4 Conclusion and Future Perspective References Chapter 13: Nanodiagnostics: New Tools for Detection of Animal Pathogens 13.1 Introduction 13.2 Traditional Methods for Detection of Animal Diseases 13.3 Recent Approaches of Nanomaterial Applications in Detection of Animal Diseases 13.3.1 Types of Nanodiagnostics 13.3.1.1 Nanotubes 13.3.1.2 Nanocrystal 13.3.1.3 Nanorobotics 13.3.1.4 Nanowires 13.3.1.5 Quantum Dots 13.3.2 Biomedical Applications of Nanodiagnostics 13.3.2.1 Disease Diagnosis and Therapy 13.3.2.2 Cancer Detection 13.3.2.3 Bio-imaging 13.4 Methods of Nanoparticle Functionalization for Disease Diagnosis 13.4.1 Immuno-Based Methods 13.4.1.1 Avian Influenza 13.4.1.2 Post-weaning Multisystemic Wasting Syndrome 13.4.1.3 Newcastle Disease 13.4.2 Molecular-Based Methods 13.4.2.1 Anthrax 13.4.2.2 Brucellosis 13.4.2.3 Aflatoxicosis 13.5 Nano Biosensors Using Biomarkers 13.5.1 Types of Biosensors 13.5.1.1 Electro-Chemical Biosensors 13.5.1.2 Potentiometric Biosensors 13.5.1.3 Amperometric Biosensors 13.5.1.4 Impedimetric Biosensors 13.5.2 Optical Biosensor 13.5.3 Mass-Based Biosensor 13.5.4 Calorimetric Biosensor 13.5.5 Detection of Antibody Markers 13.5.6 DNA Sensors 13.5.7 Aptasensors 13.5.8 Immunosensors 13.5.9 Miscellaneous 13.6 Conclusions and Future Prospective References Chapter 14: Nano-Based Robotic Technologies for Plant Disease Diagnosis 14.1 Introduction 14.2 Pathogen Detection Methods 14.2.1 Morphological Tools 14.2.2 Molecular Tools 14.2.3 Omics Tools 14.2.4 Nano-Based Diagnostics Tools 14.2.4.1 Nanoparticle-Based Sensors Quantum Dot Metal Nanoparticles Gold Nanoparticles for Pathogen Diagnosis Magnetic Nanoparticles Carbon Nanotubes 14.2.5 Nanobiosensors 14.2.5.1 CRISPR/Cas-Powered Nanobiosensors 14.2.6 Nanochips 14.2.7 Nanopore-Based Detection 14.3 Robotics Techniques for Plant Pathogens Detection 14.4 Nanotools for Detection of Plant Pathogens 14.4.1 Detection of Bacterial Pathogens 14.4.2 Fungal Pathogens Detection 14.4.3 Viral Pathogen Detection 14.5 Diagnosis of the Plant Varieties and Other Forms 14.6 Challenges 14.7 Future Trends 14.8 Conclusions References Chapter 15: Nanodiagnostic Tools for Mycotoxins Detection 15.1 Introduction 15.2 Conventional Diagnostics for Mycotoxins in Agriculture 15.3 Nanosurveillance to Mitigate Mycotoxins 15.4 Nanodiagnostics for Mycotoxins 15.4.1 Sensors Based on Nanomaterials for Mycotoxin Surveillance 15.4.2 Metallic Nanoparticles 15.5 Smart Nanosensors 15.5.1 Nanoparticles with Conductivity-Based Sensors 15.5.2 Antibody-Coupled Nanomaterials 15.6 Smart and Antifungal Packaging Nanosurveillance 15.7 Concluding Remarks References Chapter 16: CRISPR/Cas Systems: A New Biomedical and Agricultural Diagnostic Devices for Viral Diseases 16.1 Introduction 16.2 CRISPR/Cas-Based Diagnostic Tools 16.2.1 CRISPR: An Introduction 16.2.2 Applications of CRISPR 16.2.2.1 CRISPR Applications in Plant Breeding 16.2.2.2 CRISPR Applications in Animal Breeding 16.2.2.3 CRISPR Applications in Biotherapy 16.2.3 CRISPR/Cas 16.2.4 CRISPR/Cas Mechanism 16.2.5 CRISPR/Cas System 16.2.5.1 Cas3 16.2.5.2 Cas9 16.2.5.3 Cas12 16.2.5.4 Cas13 16.2.5.5 CRISPR/Cas14 16.2.6 CRISPR Methods and Techniques 16.2.6.1 CRISPR-Mediated Gene Knockout 16.2.6.2 CRISPR/Cas Knock-In 16.2.6.3 CRISPRa and CRISPRi 16.2.6.4 CRISPR/Cas System Screens 16.2.6.5 Base Editing and Prime Editing 16.2.7 CRISPR/Cas Diagnostic Tools 16.2.7.1 CRISPR/Cas3 16.2.7.2 CRISPR/Cas9 CARP-Cas9 CAS-EXPAR and NASBACC-Cas9 FELUDA-Cas9 16.2.7.3 CRISPR/Cas12 DETECTR-Cas12 HOLMES-Cas12a SENA-Cas12a ITP-CRISPR/Cas12a AIOD-CRISPR/Cas12a CRISPR-ENHANCE-Cas12a iSCAN (CRISPR/Cas12a) 16.2.7.4 CRISPR/Cas 13 Cas13 SHERLOCK-Cas13 CREST-Cas13a CARMEN-Cas13a CARVER-Cas13a 16.2.8 Challenges 16.2.9 Conclusion and Future Outlook References Chapter 17: DNA-Nanosensors for Environmental Monitoring of Heavy Metal Ions 17.1 Introduction 17.2 Heavy Metals Pollution and Detection 17.3 Nanobiosensors and Pollution Detection 17.4 DNA Biosensor and DNA Nanobiosensors 17.5 Nanosensors and DNA Nanosensors for Heavy Metals Detection 17.6 Challenges 17.7 Conclusion and Future Prospective References Chapter 18: Smart Nanosensors for Pesticides and Heavy Metals Detection 18.1 Introduction 18.2 Overview of Sensing Techniques 18.2.1 The Need for Smart and Intelligent Nanosensors 18.2.2 Smart Nanosensors and Nanobiosensors 18.2.3 Operation Modes of Nanosensors 18.3 Nanomaterials and their Types 18.3.1 General Aspect of Nanomaterials 18.3.2 Type of Nanomaterials 18.4 Nanomaterial-Based Nanosensors/Nanobiosensors and Their Applications 18.4.1 Nanosensors for Pesticides and Heavy Metal Detection 18.4.1.1 Noble Metal-Based Nanosensors 18.4.1.2 Semiconductor-Based Nanosensors 18.4.1.3 Nanocarbon-Based Nanosensors 18.4.1.4 Nanocomposite-Based Nanosensors 18.4.2 Nanobiosensors for Pesticides and Heavy Metal Detection 18.4.2.1 Enzyme-Derived Nanobiosensors 18.4.2.2 Immuno-Derived Nanobiosensors 18.4.2.3 Nucleic Acid-Derived Nanobiosensors 18.4.2.4 Whole-Cell Biosensors 18.5 Conclusion and Future Prospective References Index