ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Nanoporous materials: science and engineering

دانلود کتاب مواد نانو متخلخل: علم و مهندسی

Nanoporous materials: science and engineering

مشخصات کتاب

Nanoporous materials: science and engineering

ویرایش:  
نویسندگان: , ,   
سری: Series on Chemical Engineering volume 4 
ISBN (شابک) : 1860942105, 9781860942105 
ناشر: Imperial College Press 
سال نشر: 2004 
تعداد صفحات: 917 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 44 مگابایت 

قیمت کتاب (تومان) : 54,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 11


در صورت تبدیل فایل کتاب Nanoporous materials: science and engineering به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مواد نانو متخلخل: علم و مهندسی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مواد نانو متخلخل: علم و مهندسی

مواد متخلخل به دلیل وجود حفره هایی با ابعاد قابل کنترل در مقیاس اتمی، مولکولی و نانومتری اهمیت علمی و فناوری دارند که آنها را قادر می سازد تا مولکول ها و خوشه ها را متمایز کنند و با آنها تعامل داشته باشند. نکته جالب توجه در مورد این دسته از مواد، در مورد "هیچ" بودن درون -- فضای منافذ است. اتحادیه بین‌المللی شیمی محض و کاربردی (IUPAC) مواد متخلخل را به سه دسته تقسیم می‌کند: ریز منافذ با قطر کمتر از 2 نانومتر، مزوپورهای بین 2 تا 50 نانومتر و درشت منافذ بیشتر از 50 نانومتر. در این کتاب، مواد نانو متخلخل به عنوان آن دسته از مواد متخلخل با قطر منافذ کمتر از 100 نانومتر تعریف شده است. در طول دهه گذشته، علاقه و تلاش تحقیقاتی روزافزونی در سنتز، خصوصیات، عامل‌سازی، مدل‌سازی مولکولی و طراحی مواد نانو متخلخل وجود داشته است. چالش های اصلی در تحقیق شامل درک بنیادی روابط ساختار-ویژگی و طراحی مناسب نانوساختارها برای خواص و کاربردهای خاص است. تلاش‌های تحقیقاتی در این زمینه با رشد سریع برنامه‌های در حال ظهور مانند حسگرهای زیستی، تحویل دارو، جداسازی گاز، ذخیره‌سازی انرژی و فناوری سلول‌های سوختی، نانوکاتالیزور و فوتونیک انجام شده است. این برنامه ها فرصت های جدید و هیجان انگیزی را برای دانشمندان به منظور توسعه استراتژی ها و تکنیک های جدید برای سنتز و کاربردهای این مواد ارائه می دهد. این کتاب مجموعه ای از مرورهای سیستماتیک از پیشرفت های اخیر در مواد نانو متخلخل را ارائه می دهد. این موضوعات زیر را پوشش می دهد: (1) سنتز، پردازش، توصیف و ارزیابی ویژگی. (2) عامل‌سازی با درمان‌های فیزیکی و/یا شیمیایی؛ (3) مطالعات تجربی و محاسباتی در مورد خواص اساسی، مانند اثرات کاتالیزوری، انتقال و جذب، غربال مولکولی و جذب زیستی. (4) کاربردها، از جمله دستگاه های فوتونیک، کاتالیز، کنترل آلودگی محیطی، جداسازی و جداسازی مولکول های بیولوژیکی، حسگرها، غشاها، ذخیره سازی هیدروژن و انرژی و غیره.


توضیحاتی درمورد کتاب به خارجی

Porous materials are of scientific and technological importance because of the presence of voids of controllable dimensions at the atomic, molecular, and nanometer scales, enabling them to discriminate and interact with molecules and clusters. Interestingly the big deal about this class of materials is about the "nothingness" within -- the pore space. International Union of Pure and Applied Chemistry (IUPAC) classifies porous materials into three categories -- micropores of less than 2 nm in diameter, mesopores between 2 and 50 nm, and macropores of greater than 50 nm. In this book, nanoporous materials are defined as those porous materials with pore diameters less than 100 nm. Over the last decade, there has been an ever increasing interest and research effort in the synthesis, characterization, functionalization, molecular modeling and design of nanoporous materials. The main challenges in research include the fundamental understanding of structure-property relations and tailor-design of nanostructures for specific properties and applications. Research efforts in this field have been driven by the rapid growing emerging applications such as biosensor, drug delivery, gas separation, energy storage and fuel cell technology, nanocatalysis and photonics. These applications offer exciting new opportunities for scientists to develop new strategies and techniques for the synthesis and applications of these materials. This book provides a series of systematic reviews of the recent developments in nanoporous materials. It covers the following topics: (1) synthesis, processing, characterization and property evaluation; (2) functionalization by physical and/or chemical treatments; (3) experimental and computational studies on fundamental properties, such as catalytic effects, transport and adsorption, molecular sieving and biosorption; (4) applications, including photonic devices, catalysis, environmental pollution control, biological molecules separation and isolation, sensors, membranes, hydrogen and energy storage, etc.



فهرست مطالب

Cover Page......Page 1
Title Page......Page 2
ISBN 1860942105......Page 3
Preface......Page 4
3. Zeolite/Mesoporous Molecular Sieve Composite Materials......Page 7
6. Organic Host-guest Structures in the Solid State......Page 8
9. Hydrophobic Microporous Silica Membranes for Gas Separation and Membrane Reactors......Page 9
12. Molecular Simulation of Adsorption in Porous Materials......Page 10
15. Acidity Measurement of Nanoporous Aluminosilicates – Zeolites and MCM-41......Page 11
18. Modified Mesoporous Materials as Acid and Base Catalysts......Page 12
21. Catalysis Involving Mesoporous Molecular Sieves......Page 13
24. Functionalized Nanoporous Adsorbents for Environmental Remediation......Page 14
27. Nanoporous Materials as Supports for Enzyme Immobilization......Page 15
28. A Novel Nonsurfactant Route to Nanoporous Materials and Its Biological Applications......Page 16
1.1 Introduction......Page 17
1.2 Classification of Nanoporous Materials......Page 20
1.3 Properties and Characterization of Nanoporous Materials......Page 21
1.4 Major Opportunities in Applications......Page 22
1.5 Concluding Remarks......Page 27
References......Page 29
2.1 Introduction......Page 30
2.2 Siliceous Mesoporous Materials......Page 32
2.3 Wall Structures of Mesoporous Materials Templated by Amphiphilic Block Copolymers......Page 38
2.4 Morphology of Mesoporous Materials Templated by Block Copolymers......Page 40
2.5 Non-siliceous Structures......Page 44
2.6 Applications......Page 49
2.8 Acknowledgements......Page 54
References......Page 55
3.1 Introduction......Page 63
3.2 Mechanisms of Zeolite Germination......Page 64
3.3 Synthesis Strategies for Zeolite/MMS Composites......Page 67
3.4 Catalytic Properties......Page 100
Bez nazwy......Page 0
3.5 Future Challenges......Page 106
References......Page 109
4.1 Introduction......Page 117
4.2 Materials and Methods......Page 119
4.3 Results and Discussion......Page 122
4.4 Conclusion......Page 134
References......Page 135
5.1 Introduction......Page 141
5.2 Synthesis Routes......Page 142
5.3 Compositions of Mesostructured and Mesoporous Materials......Page 156
5.4 Conclusions and Outlook......Page 167
References......Page 168
6.1 Introduction......Page 181
6.2 Host Design Principles......Page 184
6.3 C3 Symmetry and Halogen...Halogen Interaction in Host Design......Page 186
6.4 Wheel-axle Host Lattice......Page 193
6.5 Design of Layered Host: Crystal Engineering......Page 195
6.6 Gas Storage in Interstitial Voids......Page 198
6.7 Guest Selectivity in Inclusion......Page 200
References......Page 201
7.1 Introduction......Page 204
7.2 Methods......Page 207
7.3 Results and Discussion......Page 208
References......Page 218
8.1 Introduction......Page 222
8.2 A Survey of Photonic Bandgap......Page 223
8.3 Nanolithography for Photonic Crystals......Page 227
8.4 Self-assembly Approaches to 3D Photonic Crystals......Page 228
8.5 Fabrication of Intentional Defects in 3D Photonic Crystals......Page 242
References......Page 244
9.1 Introduction......Page 253
9.2 Inorganic Membranes......Page 254
9.3 Hydrothermal Stability and Hydrophobicity-key Areas of Improvement......Page 259
9.4 Membrane Reactors......Page 267
9.5 Perspective and Concluding Remarks......Page 272
References......Page 273
10. Synthesis and Characterization of Carbon Nanotubes for Hydrogen Storage......Page 279
10.1 Introduction......Page 280
10.2 Construction, Structure and Unique Properties of Carbon Nanotubes......Page 282
10.3 Synthesis of Carbon Nanotubes......Page 287
10.4 Surface and Pore Structure of Carbon Nanotubes......Page 295
10.5 Experimental Investigations on Hydrogen Uptake in Carbon Nanotubes......Page 302
10.6 Theoretical Predictions and Simulations of Hydrogen Uptake in Carbon Nanotubes......Page 311
10.7 Possible Hydrogen Adsorption Sites in Carbon Nanotubes......Page 319
10.8 Future Research Topics and Remarks......Page 324
References......Page 325
11.1 Introduction......Page 333
11.2 Surface and Pore Size Analysis by Physisorption: General Aspects......Page 338
11.3 Pore Condensation and Adsorption Hysteresis......Page 344
11.4 Pore Size Analysis of Mesoporous Solids......Page 361
11.5 Concluding Remarks......Page 371
11.7 References......Page 372
12. Molecular Simulation of Adsorption in Porous Materials......Page 381
12.2 Simulation Techniques......Page 382
12.3 Thermodynamics......Page 385
12.4 Adsorption in Spaces with Simple Geometries......Page 388
12.5 Adsorption Heterogeneity......Page 396
12.6 Adsorption in Zeolites......Page 398
References......Page 403
13. Surface Functionalization of Ordered Nanoporous Silicates......Page 409
13.1 Introduction......Page 410
13.2 Functionalization of ONSs by Grafting......Page 412
13.3 Functionalization by co-condensation......Page 423
13.4 Concluding Remarks......Page 433
References......Page 434
14.1 Introduction......Page 443
14.2 Direct Mixed-gel Synthesised Mesoporous Aluminosilicates......Page 444
14.3 Methods for the Surface Alumination of Mesoporous Silicas......Page 445
14.4 Acidity and Catalytic Activity of Al-grafted Mesoporous Silicates......Page 455
14.5 Stability of Al-grafted Mesoporous Aluminosilicates......Page 462
14.6 Alumination of Mesoporous Silica via Composite Materials......Page 471
14.7 Concluding Remarks......Page 473
References......Page 474
15.1 Introduction......Page 480
15.2 Titration Methods......Page 482
15.3 Thermodynamic Methods......Page 484
15.4 Infrared Spectroscopic (IR) Methods......Page 489
15.5 Nuclear Magnetic Resonance (NMR) Methods......Page 493
15.6 Other Spectroscopic Methods......Page 496
15.7 Concluding Remarks......Page 498
References......Page 499
16.1 Introduction......Page 503
16.2 Molecular Designed Dispersion Approach......Page 504
16.3 Applications: Designed Dispersions of Metal Oxides on Porous Solids......Page 515
16.5 Acknowledgement......Page 531
References......Page 532
17.1 Introduction......Page 535
17.2 Heteropolyacids (HPAs) Supported on Mesoporous Materials......Page 536
17.3 Sulfated Zirconia Supported on Mesoporous Materials......Page 538
17.4 Acidity-enhanced Mesoporous Materials by Post-treatments......Page 543
17.5 Strongly Acidic Mesoporous Aluminosilicates Assembled from Preformed Nanosized Zeolite Precursors......Page 553
References......Page 562
18.1 Introduction......Page 569
18.2 Synthesis of Materials......Page 570
18.3 Acid Catalysts......Page 573
18.4 Base Catalysis......Page 591
18.5 Conclusions and Perspectives for Future Directions......Page 602
References......Page 603
19.1 Introduction......Page 612
19.2 Synthesis of Mesoporous Silicas with or without Heterometallic Elements......Page 613
19.3 Preparation and Characterization of Lewis Acid/Base Containing Mesoporous Silica Catalysts......Page 614
19.4 Application of Lewis Acid Catalysts Supported on Mesoporous Silica......Page 620
19.5 Applications of Basic Catalysts Supported on Mesoporous Silica......Page 627
19.6 Concluding Remarks......Page 628
References......Page 629
20.1 Introduction......Page 639
20.2 Shape-selective Preparation of 4,4\'-diisopropylbiphenyl (4,4\'-DIBP)......Page 643
20.3 Ethylation and Transethylation of Biphenyl and Its Derivate into 4,4\'-diethylbiphenyl (4,4\'-DEBP)......Page 650
20.4 Preparation of 4,4\'-dimethylbiphenyl (4,4\'-DMBP)......Page 652
20.5 Conclusion......Page 661
References......Page 662
21.1 Introduction......Page 665
21.2 Acid/Base Catalysis......Page 666
21.3 Redox Catalysis......Page 676
21.4 Enantioselective Catalysis......Page 684
21.6 Acknowledgements......Page 693
References......Page 698
22.1 Introduction......Page 710
22.2 Intraparticle Transport Mechanisms......Page 711
22.3 Combined Bulk and Knudsen Diffusion......Page 713
22.4 Viscous Flow......Page 715
22.5 Diffusion within Micropores......Page 719
22.6 Particle Uptake Rate Models......Page 730
References......Page 738
23.1 Introduction......Page 743
23.2 Characterisation of Nanoporous Adsorbents in View of Their Use for Adsorption in Aqueous Solution......Page 745
23.3 Thermodynamics and Kinetics of Adsorption in Aqueous Solution......Page 752
23.4 Other Methods......Page 756
23.5 Applications......Page 757
23.6 Conclusions......Page 764
References......Page 765
24.1 Introduction......Page 772
24.2 Synthesis of Ordered Materials......Page 773
24.3 Functionalization......Page 776
24.4 Remediation......Page 779
24.6 Acknowledgements......Page 784
References......Page 785
25.1 Introduction......Page 788
25.2 Mechanism Approaches......Page 789
25.3 Some Adsorbents Used in Air Treatments......Page 802
25.4 Adsorption and Fixed Bed Adsorbers......Page 804
25.5 Industrial Systems and Design Approaches......Page 817
25.6 Activated Carbon Regeneration......Page 821
References......Page 825
26.1 Introduction......Page 828
26.2 Separations, Adsorption and Solutes......Page 832
26.3 Adsorption Capacity and Kinetics......Page 836
26.4 Access to Pores......Page 840
26.5 Size Exclusion......Page 843
26.6 Adsorption Mechanisms......Page 845
26.7 Regeneration and Reuse......Page 852
26.8 Stability......Page 853
26.9 Challenges Remaining......Page 855
26.10 Concluding Remarks......Page 856
References......Page 857
27.1 Introduction......Page 865
27.2 Immobilization Methods for Enzymes......Page 867
27.3 General Considerations in the Application of Nanoporous Materials for Enzyme Immobilization......Page 868
27.4 Microporous Molecular Sieves as Carriers......Page 869
27.5 Mesoporous Molecular Sieves as Carriers......Page 871
27.6 Mesocellular Foam (MCF) Materials as Carriers......Page 882
27.7 Future Developments......Page 884
References......Page 886
28.1 Introduction......Page 889
28.2 Nonsurfactant-templating Route to Mesoporosity......Page 890
28.3 Selected Applications of Nonsurfactant-templating Approach......Page 894
28.4 Nanoencapsulation of Enzymes and Other Bioactive Substances......Page 896
28.5 Protein Folding/Unfolding in Nanoporous Host Materials and Rigid Matrix Artificial Chaperones......Page 898
28.6 Summary......Page 902
References......Page 903
Author Index......Page 909
B......Page 911
F......Page 912
L......Page 913
P......Page 914
T......Page 915
Z......Page 916
Back Page......Page 917




نظرات کاربران