دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Loutfy H. Madkour
سری: Nanotechnology for Drugs, Vaccines and Smart Delivery Systems
ISBN (شابک) : 1032135204, 9781032135205
ناشر: CRC Press
سال نشر: 2022
تعداد صفحات: 558
[559]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 52 Mb
در صورت تبدیل فایل کتاب Nanoparticle-Based Drug Delivery in Cancer Treatment به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب دارورسانی مبتنی بر نانوذرات در درمان سرطان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
انتخاب دقیق نانوذرات به عنوان هدف و در مسیرهای تحویل دارو، کارایی درمانی را در سرطان افزایش میدهد. تحویل دارویی مبتنی بر نانوذرات در سرطان درمان در مورد تحولات نانوتکنولوژیکی نانوذرات مبتنی بر RNA تداخلی، وسایل حمل و نقل و برهمکنش های درمانی RNAi-هدف مولکولی تایید شده و نتایج کارآزمایی های بالینی و پیش بالینی را توضیح می دهد. این کتاب همچنین راهبردهایی را برای روشهای جهانی ساخت نانومواد آلی-غیر آلی ترکیبی ارائه میکند که میتوانند به طور گسترده در زمینه زیست پزشکی به کار روند.
ویژگی های کلیدی:
این کتاب منبع ارزشمندی برای محققان، اساتید و دانشجویانی است که در مورد دارورسانی، حاملهای ژن تحقیق میکنند. ، درمان سرطان، نانوتکنولوژی و نانومواد.
The careful choice of nanoparticles as targets and in drug delivery routes enhances therapeutic efficacy in cancer. Nanoparticle-Based Drug Delivery in Cancer Treatment discusses nanotechnological developments of interfering RNA-based nanoparticles, delivery vehicles, and validated therapeutic RNAi–molecular target interactions and explains the results of clinical and preclinical trials. The book also gives strategies for universal methods of constructing hybrid organic–inorganic nanomaterials that can be widely applied in the biomedical field.
Key Features:
This book is a valuable resource for researchers, professors, and students researching drug delivery, gene carriers, cancer therapy, nanotechnology, and nanomaterials.
Cover Half Title Series Page Title Page Copyright Page Table of Contents Preface Author Chapter 1 The Advantages and Versatility of Carrier-Free Nanodrug and Nanoparticle Systems for Cancer Therapy 1.1 Nanoparticles’ (NPs) Fabrication and Their Applications in Cancer Treatment 1.2 Classification of NPs 1.3 Synthesis and Characterization of NPs 1.4 Biofabrication Synthesis Methods of NPs 1.4.1 Intracellular Synthesis of NPs 1.4.2 Extracellular Synthesis of NPs 1.4.3 Cell-Free Media 1.4.4 Cell Biomass Filtrate 1.4.5 Biomolecule-Based NP Synthesis 1.4.5.1 Pigments 1.4.5.2 Proteins 1.4.5.3 Enzymes 1.4.5.4 Polysaccharides 1.5 Factors Influencing the Biofabrication of NPs Using Microorganisms 1.5.1 Illumination 1.5.2 Time of Exposure 1.5.3 pH 1.5.4 Temperature 1.5.5 Concentration of Precursors and Natural Reducing Agents 1.5.6 Nature of Microorganisms 1.6 Cyanobacteria as Biomachinery for NP Synthesis 1.6.1 Silver Nanoparticles (Ag-NPs) 1.6.2 Gold Nanoparticles 1.6.3 Colloidal Au-NPs 1.6.4 Other Nanomaterials 1.6.5 Metal Oxides and Akaganéite NPs 1.6.6 Bimetallic NPs 1.7 Passive and Active of NP Targeting Delivery in Cancer Treatment 1.8 Size and Surface Characteristics of NPs 1.9 Types of Nanocarriers Used as Controlled Delivery Vehicles for Cancer Treatment 1.10 Kinetics and Biodistribution of NPs 1.11 Mechanisms of Nanocarriers for Drug Delivery 1.11.1 Inorganic Nanocarriers 1.11.2 Organic Nanocarriers 1.11.3 Quantum Dots 1.12 Carrier-Free Nanodrugs as Anticancer Drugs 1.13 Synthetic Methods of Carrier-Free Nanodrugs 1.13.1 Direct Self-Assembly of Drug Molecules 1.13.1.1 Self-Assembly of Pure Chemotherapy Drug Molecules 1.13.1.2 Self-Assembly of Chemotherapy with PDT or PTT Drug Molecules 1.13.1.3 Self-Assembly of Chemotherapy with Immunotherapy Drugs 1.13.1.4 Self-Assembly of Chemotherapy Drugs with Other Organic Molecules 1.13.2 Self-Assembly of Clinical Drug Molecules with Different Conjugation 1.13.2.1 Conjugation of Homodimeric Drug Molecules with Various Linkers 1.13.2.2 Conjugation of Heterodimeric Drug Molecules with Various Linkers 1.13.2.3 Conjugation of Drug Molecules with Various Functional Organic Molecules 1.14 Advantages and Challenges of Carrier-Free Nanodrugs 1.14.1 Drug Loading Capacity 1.14.2 Improved Pharmacokinetic Profile and Stability 1.14.3 Enhanced Safety Profile 1.14.4 High Flexibility for Responsive Drug Release and Synergistic Combinatorial Therapy 1.14.5 Challenges 1.15 The Involvement of Drug Chemical Structure in Nanocarrier Design Development 1.16 Conclusions and Future Outlook References Chapter 2 Strategies, Design, and Chemistry in Small Interfering RNA Delivery Vehicle Systems for Cancer Therapy 2.1 Extracellular and Intracellular Barriers in Systemic siRNA Delivery to Solid Tumors 2.2 Design Criteria to Overcome Extracellular Barriers 2.3 Design Criteria to Overcome Intracellular Barriers 2.4 Design of siRNA Delivery Vehicles 2.5 Carrier Design for Stability and Release 2.5.1 Hydrophobicity-stabilized Delivery Vehicles 2.5.2 Delivery Carrier Design for Selective Release of siRNA 2.5.2.1 Redox Potential Responsive Delivery Vehicles 2.5.2.2 Acidic pH Responsive Delivery Vehicles 2.5.2.3 ATP Concentration-responsive Delivery Vehicles 2.6 Delivery Carrier Design for High Cell Specific Recognition 2.6.1 Biological Stimuli-responsive Delivery Vehicles 2.6.2 Ligand Installed Delivery Vehicles 2.7 Delivery Vehicles for High Endosomal Escapability 2.8 Delivery Carrier Design in Other Category 2.8.1 Layer-by-layer Delivery Vehicle 2.8.2 Calcium Phosphate-formulated Delivery Vehicles 2.8.3 Gold Nanoparticle-templated Delivery Vehicles 2.9 Synthesis of siRNA and Chemical Modification of Nucleotides 2.9.1 Nucleotides Modification 2.9.2 Synthesis of siRNA 2.10 siRNA-ligand Conjugates 2.11 Nucleotides Derived Nanoparticles 2.12 Lipid-based Delivery Systems 2.12.1 Lipid Analogs with Cationic Head Groups and Hydrophobic Tails 2.13 Conclusions References Chapter 3 DNA/RNA Nanoparticles Structures for siRNA Delivery Applications 3.1 Structural DNA-/RNA-based RNAi Systems 3.2 Poly/Multimeric siRNA Delivery Applications 3.2.1 Long Linear siRNA 3.2.2 Branched siRNA 3.2.3 Novel Carriers for Poly/Multimeric siRNA Delivery 3.3 Three-dimensional RNA/DNA Structures for siRNA Delivery Applications 3.3.1 RNA-based Nanoparticles for siRNA Delivery 3.3.2 DNA Polyhedron Nanoparticles for siRNA Delivery 3.3.3 Large-scale Preparation of DNA Nanostructures for Translational Study 3.4 DNA/RNA Ball Technology for siRNA Delivery Applications 3.4.1 RNA Microsponge/Ball Technology for siRNA Delivery 3.4.2 Microscopic DNA Scaffolds for Gene Delivery 3.5 DNA/RNA Nanoparticles 3.5.1 pRNA Nanoparticles 3.5.2 RNA Nanoring 3.5.3 Tetrahedron Oligonucleotide Nanoparticles 3.6 Conclusions References Chapter 4 Codelivery in Nanoparticle-based siRNA for Cancer Therapy 4.1 Nanocarriers to Deliver RNA (siRNA) Chains 4.2 Mechanisms of Cancer Drug Resistance 4.3 Alterations in the Membrane Transporters or Efflux Pumps 4.4 Activation of Antiapoptotic Pathways 4.5 Sensitization Strategies for siRNA-based Therapeutics 4.6 Efflux Pump–related Sensitization Strategies 4.7 Nonefflux Pump–related Sensitization Strategies 4.8 Nanocarriers to Codeliver siRNA and Small Drugs 4.9 Polymeric Nanoparticles 4.9.1 Cyclodextrin Nanoparticle 4.9.2 Chitosan Nanoparticles 4.9.3 Polyethyleneimine 4.9.4 PLGA 4.9.5 Dendrimers 4.10 Inorganic Nanoparticles 4.11 Inorganic-based Nanoparticles 4.12 Polymer-based Nanoparticles 4.13 Lipid-based Nanoparticles 4.14 Lipid-based Delivery 4.15 Bioconjugated siRNAs 4.16 Targeted Delivery 4.17 Clinical Trials 4.18 Conclusions References Chapter 5 Small Interfering RNAs, MicroRNAs, and NPs in Gynecological Cancers 5.1 Introduction 5.2 siRNA Technology in Cancer Therapy 5.3 siRNA-Based Gene Silencing 5.4 Off-Target Effects and Stimulation of Immune Response 5.5 Delivery Systems 5.5.1 Lipid-Based Nanovectors for siRNA Delivery 5.5.2 Liposomes and Lipoplexes 5.5.3 Stable Nucleic Acid Lipid Particles (SNALPs) 5.6 Polymeric Nanoparticles 5.6.1 Cyclodextrin (CD) Nanoparticles 5.6.2 Chitosan and Inulin Nanoparticles 5.6.3 Polyethylenimine (PEI) 5.6.4 Anionic Polymers 5.6.5 Cationic Dendrimers 5.7 Carbon Nanotubes (CNTs) 5.8 Inorganic Nanoparticles (INPs) 5.8.1 Magnetic Nanoparticles (MNPs) 5.8.2 Gold Nanoparticles (AuNPs) 5.9 Limitations to the siRNA Therapeutic Approach 5.10 siRNA in Clinical Trials for Cancer Therapy 5.11 Gynecological Cancers (GCs) 5.12 Dysregulation of miRNAs in Gynecological Cancers 5.12.1 Ovarian Cancer 5.12.2 Cervical Cancer 5.12.3 Endometrial Cancer 5.13 Biological Significance of miRNAs in Gynecological Cancers 5.13.1 Cell Proliferation, Survival, and Stemness 5.13.2 Invasion and Metastasis 5.13.3 Modulation of Tumor Microenvironment 5.13.4 Chemoresistance Mechanisms 5.14 Clinical Significance of miRNAs in Gynecological Cancers 5.14.1 Tools for Early and Differential Diagnosis 5.14.2 Predictive and Prognostic Biomarkers 5.14.3 Next-Generation of Therapeutics 5.15 Conclusion and Future Perspectives References Chapter 6 Nanoparticle–Based RNA (siRNA) Combination Therapy Toward Overcoming Drug Resistance in Cancer 6.1 Small Interference RNA (siRNA) 6.2 Novel Combination Therapy 6.3 Nanoparticulate Systems for Combinatorial Drug Delivery 6.3.1 Liposomes 6.3.2 Polymeric Nanoparticles 6.3.3 Polymer–Drug Conjugates 6.3.4 Dendrimers 6.3.5 Other Nanoparticles 6.4 Lipid-Based Nanovectors for Systemic siRNA Delivery 6.4.1 Liposomes/Lipoplexes 6.4.2 Stable Nucleic Acid Lipid Particles and Lipidoids 6.5 Combinatorial Nanoparticles against Multidrug Resistance in Cancer 6.5.1 Combination of Efflux Pump Inhibitors with Chemotherapeutics 6.5.2 Combinations of Pro-apoptotic Compounds with Chemotherapeutics 6.5.3 Combinations of MDR-Targeted siRNA with Chemotherapeutics 6.6 Combination Strategies against Clinical Cancer Drug Resistance 6.6.1 Combinatorial Nanoparticles Co-encapsulating Hydrophobic and Hydrophilic Drugs 6.6.2 Combinatorial Nanoparticles with Precise Ratiometric Drug Loading 6.6.3 Combinatorial Nanoparticles with Temporally Sequenced Drug Release 6.7 Gold Nanoparticles Radiosensitization Effect in Radiation Therapy of Cancer 6.8 Interaction of X-Ray and Gamma Radiations with GNPs 6.9 Monte Carlo Modeling of GNP Dose Enhancement Effect 6.10 GNP Sensitization in Cell Line and Animal Models 6.11 Impact of Radiation Energy 6.12 Biomedical Applications of Graphene Oxide (GO) 6.12.1 Characterization of GOs 6.12.2 Induction of Apoptosis by GOs in Endothelial Cells (ECs) 6.12.3 Inhibition of Autophagy Attenuates SGO- or NGO-Induced Apoptotic Cell Death 6.12.4 SGO or NGO Increases Intracellular Ca[sup(2+)] Levels by Activating Calcium Channels, and Elevated Intracellular Ca[sup(2+)] Activate Subsequent Downstream Intracellular Events Related to GO-Mediated Autophagy 6.13 Conclusion and Outlook References Chapter 7 Advantages and Limitations of RNAi Delivery for Cancer Biological Therapeutics Imaging 7.1 Introduction 7.2 RNAi Cancer Therapeutics in Clinical Trials 7.3 Biological Barriers for RNAi Cancer Therapeutics 7.3.1 Administration Barrier 7.3.2 Vascular Barrier 7.3.3 Cellular Barrier 7.3.4 Immune Response and Safety 7.4 Imaging Modalities in the RNAi Cancer Therapeutics Development Process 7.4.1 Optical Imaging 7.4.2 PET and SPECT 7.4.3 MRI 7.4.4 Ultrasound 7.4.5 Multimodality Imaging 7.5 Theranostic Nanomedicines 7.6 Preparation of Nanogels and Triggered Drug Release 7.7 Cellular Uptake and Cytotoxicity of PTX-Loaded HAI-NGs 7.8 In Vivo Pharmacokinetics, Near Infrared Imaging, and Biodistribution of Nanogels 7.9 Enhanced CT Imaging by HAI-NGs 7.10 In Vivo Tumor Penetration and Therapeutic Efficacy of PTX-Loaded HAINGs 7.11 Conclusions and Perspectives References Chapter 8 Recent Development of Silica Nanoparticles as Delivery Biomedical Applications for Cancer Imaging and Therapy 8.1 Nanotechnology in Cancer Diagnosis and Therapy 8.2 Characteristics of Silica Nanoparticles 8.2.1 Particle Size 8.2.2 Surface Modification 8.3 Imaging Applications of Silica Nanoparticles 8.3.1 Fluorescence Imaging 8.3.2 Magnetic Resonance Imaging (MRI) 8.4 Drug and Gene Delivery Using Silica Nanoparticles 8.4.1 Drug Delivery 8.4.2 Chemotherapeutic Agents 8.4.3 Photodynamic Therapy Agents 8.4.4 Gene Therapy Using SiNPs-Based Vectors 8.5 Multifunctional Silica Nanoparticles 8.6 Biocompatibility of Silica Nanoparticles 8.7 Mesoporous Silica Nanoparticles (MSNPs) 8.8 Preparation and Properties of the Functional Molecules Coated MSNs 8.8.1 MSNs 8.8.2 Lipid-Coated MSNs 8.8.3 Protein-Coated MSNs 8.8.4 Poly(NIPAM)-Coated MSNs 8.9 Potential Applications and Outlooks 8.9.1 In Photodynamic Therapy 8.9.2 In Cell Imaging 8.9.3 In Controlled Release 8.9.4 In Selective Recognition 8.10 Conclusions References Chapter 9 Application of Carbon Nanotubes in Cancer Vaccines as Drug Delivery Tools 9.1 Introduction 9.2 Carbon Nanotubes 9.3 Carbon Nanotubes (CNTs) As Nanocarriers 9.3.1 Spheres Vs Tubes Vs Sheets As Nanocarriers 9.3.2 Mechanisms of CNTs’ Cellular Uptake 9.3.3 CNTs’ Biocompatibility In Vitro 9.3.3.1 Effect of CNTs’ Chemical Functionalization 9.3.3.2 Biocompatibility with Immune Cells 9.4 CNT Functionalization Techniques 9.4.1 Noncovalent Functionalization 9.4.2 Covalent Functionalization 9.5 CNTs’ Biodistribution 9.6 Functionalized CNTs As Cancer Vaccine Delivery System 9 6.1 Functionalized CNTs As Delivery Vector for Tumor-Derived Antigen 9.6.2 Functionalized CNTs As Delivery Vector for Adjuvants 9.6.3 Functionalized CNTs As Delivery Vector for Both Tumor-Derived Antigen and Adjuvants 9.7 CNTs in Drug Delivery 9.7.1 Covalent Drug Attachment to CNTs 9.7.2 Noncovalent Drug Attachment to CNTs 9.8 Delivery of Chemotherapeutics 9.8.1 CNT–Doxorubicin Complexes 9.8.2 CNT–Methotrexate Constructs 9.8.3 CNT–Taxane Constructs 9.8.4 CNT–Platinum Constructs 9.8.5 CNT–Camptothecin Constructs 9.8.6 CNT–Gemcitabine Constructs 9.9 Delivery of Immunotherapeutic 9.10 Delivery of Nucleic Acids 9.11 Loading CNTs with Anticancer Drugs 9.12 Cellular Targeting and Uptake of CNTs 9.13 Drug Release from CNTs 9.14 CNTs in Thermal Ablation of Cancer Cells 9.15 Alternative Anticancer Strategies: Thermal Ablation and Radiotherapy 9.16 Tumor-Targeted CNT 9.17 CNTs in Gene Therapy 9.18 Toxicity of CNT 9.19 Future Perspective of CNTs As Vaccine Delivery Systems 9.20 Conclusion and Future Directions References Chapter 10 Development of Oligonucleotide Delivery, (siRNAs), and (miRNA) Systems for Anticancer Therapeutic Strategy Immunotherapy 10.1 Drug Delivery Systems 10.2 Short-Interference RNA as a Potential Treatment of Liver Diseases 10.2.1 Current Reports Regarding Delivery of siRNA to Liver Tissue 10.2.2 YSK-MEND, Lipid Nanoparticles for the Delivery of siRNA to the Liver 10.2.3 Challenge to Treating HBV Infections Using the YSK-MEND 10.3 MEND System Meets to Cancer Immunotherapy 10.3.1 STING Ligand, Cyclic di-GMP, Loaded Nanoparticles for Cancer Immunotherapy 10.3.2 Enhancement of Dendritic Cell –Based Immunotherapy against Cancer by siRNA- Mediated Gene Silencing 10.3.3 Lipid Antigen Delivery: New Strategy for Immunotherapy 10.4 Mitochondria, a Candidate for a Target Organelle in Cancer Therapy 10.4.1 Current State of Our Knowledge Regarding Mitochondrial DDS Focusing on Cancer Therapy 10.4.2 MITO-Porter: A Liposome for Mitochondrial Delivery 10.4.3 Challenge to Cancer Therapy by the Mitochondrial Delivery of Therapeutics Using a MITO-Porter 10.5 Immunomodulation of Hematological Malignancies 10.6 The Requirements from Oligonucleotide Delivery Systems for Site-Specific Targeting to Malignant Leukocytes 10.7 Systemic Delivery of Inhibitory Oligonucleotides to Malignant Leukocytes 10.7.1 ASOs and siRNA-CpG 10.7.2 Aptamers 10.8 Supramolecular NCs for Systemic Delivery of Inhibitory Oligonucleotides into Blood Cancers 10.8.1 Polymer-Based Delivery Systems 10.8.2 Lipid-Based Delivery Systems 10.8.2.1 Liposomes 10.8.2.2 Stabilized Nucleic Acid Lipid Particles 10.9 Future Outlook References Chapter 11 Pharmacogenomics Synergistic Strategies Using a Chimerical Peptide for Enhanced Chemotherapy Based on ROS and DNA Nanosystem 11.1 Chemotherapy As Synergistic Gene 11.2 Characterization of Peptide and Complexes 11.3 Drug Loading and Release Behavior In Vitro 11.4 Endosome Escape Capability 11.5 Gene Transfection In Vitro 11.6 In Vitro Cytotoxicity 11.7 Codelivery of Drug and Gene In Vitro 11.8 Synergistic Effect In Vitro 11.9 Antitumor Effect In Vivo 11.10 ROS-Triggered Self-Accelerating Drug Release Nanosystem 11.11 Characterization of T/D@RSMSNs 11.12 Evaluation of ROS-Responsive Drug Release 11.13 Analysis of the ROS-Regenerating Ability of ?-TOS In Vitro 11.14 Intracellular ROS-Triggered Amplifying ROS Signals and Self-Accelerating Drug Release 11.15 Evaluation of Cytotoxicity In Vitro of MSN 11.16 Antitumor experiments In Vivo Via Intravenous Injection 11.17 Platinum-Based Combination Chemotherapeutic Drugs 11.17.1 Cell and RNA Preparation 11.17.2 Classification of Platinum Response in Ovarian Tumors 11.17.3 Cross-Platform Affymetrix GeneChip Comparison 11.17.4 Cell Proliferation and Drug Sensitivity Assays 11.18 Developing a Gene Expression–Based Predictor of Cisplatin Sensitivity 11.18.1 Developing a Gene Expression–Based Predictor of Pemetrexed Sensitivity 11.19 In Vitro Validation of the Cisplatin and Pemetrexed Predictor 11.19.1 In Vivo Validation of the Cisplatin Sensitivity Predictor 11.20 Patterns of Predicted Chemotherapy Response to Cisplatin and Pemetrexed in NSCLC 11.21 The Sequence of Chemotherapy May Be Critical in Optimizing Responses 11.22 Conclusions References Chapter 12 Pharmacokinetics, Biodistribution, and Therapeutic Applications of Recently Developed siRNA and DNA Repair Genes Recurrence 12.1 RNAi as a Potential Therapeutic 12.2 Therapeutic Applications of siRNA and Target Genes 12.2.1 Ocular Diseases 12.2.2 Cancer 12.2.3 Liver Diseases 12.2.3.1 HCC 12.2.3.2 Hepatic Viral Infections (Table 12.3) 12.2.4 Respiratory Diseases 12.3 Pharmacokinetics of siRNA Therapeutics 12.3.1 Preclinical Studies 12.3.2 Clinical Studies 12.4 Biodistribution of siRNA Therapeutics 12.4.1 Tracking siRNA Labeled with Fluorescent Dyes 12.4.2 Tracking Radiolabeled siRNA 12.4.3 Tracking siRNA Itself 12.4.4 Tracking Carriers 12.4.5 Targeted vs. Non-Targeted 12.5 Pharmacological Effects of siRNA Therapeutics 12.5.1 Liver Diseases 12.5.1.1 HCC 12.5.1.2 Liver Infections 12.5.2 Respiratory Diseases 12.5.3 Potential Toxicity of siRNA Therapeutics 12.6 DNA Recurrence-associated Genes 12.6.1 Functional Enrichment Analyses 12.7 Genomic Global Analysis of the TCGA 12.8 Conclusions References Chapter 13 Nanotechnologies Assemblies of siRNA and Chemotherapeutic Drugs Codelivered for Cancer Therapeutic Applications 13.1 Double-stranded RNA (dsRNA) 13.2 siRNA Mechanism 13.3 siRNA Delivery Challenges 13.3.1 General Delivery Barriers 13.3.2 Local Delivery Considerations 13.4 siRNA Modifications and Carriers 13.5 Local Delivery Strategies 13.5.1 Microparticles 13.5.2 Scaffolds 13.5.3 Electrospun Fibers 13.5.4 Hydrogels 13.5.5 Surface Coatings 13.6 Therapeutic Applications 13.6.1 Tissue Regeneration 13.6.2 Directing Cellular Differentiation 13.6.3 Bone Pathologies 13.6.4 Angiogenesis and Wound Healing 13.6.5 Fibrosis 13.6.6 Inflammation 13.6.7 Microbial Infections 13.6.8 Clinical Prospects 13.6.9 Cancer 13.7 siRNA for Colorectal Cancer Therapy 13.8 Nanoassemblies for Combinatorial Delivery of siRNA 13.8.1 Synthesis and Characterization of Block Copolymers 13.8.2 Study on Cell Uptake 13.9 Liposomes and siRNA Delivery for Melanoma Therapy 13.9.1 Intracellular Localization of the Lipoplexes and Protein Expression Knockdown 13.10 Targeted Delivery: Mechanistic Pathway 13.11 Magnetic Field for Cancer Treatment 13.12 Electric Field for Cancer Therapy 13.13 Thermal Treatment for Cancer Therapy 13.14 Differential Drug Delivery to Tissues, a Goal of DDS 13.15 Future Challenges in Cancer Therapy References Chapter 14 Targeted Systemic Combinatorial Delivery of siRNA Polyplexes–Functional Quantum Dot-siRNA Nanoplexes 14.1 Targeted Systemic Delivery of siRNA to Cervical Cancer Model 14.1.1 Preparation and Physicochemical Characterizations of Targeted uPIC-AuNP 14.1.2 In Vitro siRNA Delivery by Targeted uPIC-AuNP 14.1.3 In Vivo Tumor Accumulation and Gene Silencing of cRGD-uPIC-AuNP 14.1.4 In Vivo Tumor Growth Inhibition by Intravenous Administration of siE6-Loaded cRGD-uPIC-AuNP 14.2 Targeted Combinatorial siRNA Polyplexes 14.3 Oligomer Synthesis and Formation of Targeted Combinatorial Polyplexes (TCPs) 14.4 Functional Quantum Dot-siRNA Nanoplexes 14.4.1 Characterization of QD-SMCC-siRNA 14.4.2 Cellular Ultrastructural Response to the QD-SMCC-siRNAs 14.4.3 Quantification of the Transfection Efficiency of QD-SMCC-si In Vitro 14.4.4 In Vivo Fluorescence Imaging and Histological Evaluation 14.4.5 Silencing Efficiency of QD-SMCC-si and Suppression of SOX9 In Vivo 14.5 Conclusions References Chapter 15 Recent Advances of Nanotechnologies for Cancer Immunotherapy Treatment 15.1 Basics of Immunotherapy and the Tumor Microenvironment 15.1.1 Nanotechnology in Cancer Immunotherapy 15.2 Delivery of Tumor Vaccines by Nanoparticles for Tumor Immunotherapy 15.3 Antigenic Peptide-Based Nanovaccines 15.3.1 Polymeric Nanocarriers 15.3.1.1 PLGA Nanoparticles 15.3.1.2 Micellar Nanocarriers 15.3.1.3 Hydrogel Nanoparticles 15.3.2 Liposomes 15.3.3 Exosomes 15.3.4 Gold Nanoparticles 15.3.5 Mesoporous Silica Nanoparticles (MSNs) 15.3.6 Carbon Nanotubes (CNTs) 15.4 Nanoparticles Delivering Immune Checkpoint Inhibitors 15.5 The Basic Mechanism of Cytotoxic T Lymphocyte Antigen-4 (CTLA-4) 15.5.1 Antibodies Blocking CTLA-4 15.5.2 Combination Therapies Based on CTLA-4 Blockade 15.5.2.1 Synergistic Effects by Combining Drug-Loaded Nanoparticles with Immune Checkpoint Inhibitors 15.5.3 siRNA Targeting CTLA-4 Immune Checkpoint 15.6 The Basic Mechanism of PD-1/PD-L1 Axis 15.6.1 Antibodies Blocking PD-1/PD-L1 Pathway 15.6.2 Combination Therapies Based on PD-1/PD-L1 Pathway Blockade 15.6.2.1 Enhanced Antitumor Effect by Combination of Therapeutic Agents and Immune Checkpoint Inhibitors 15.6.2.2 Synergistic Effects by Combining Drug-Loaded Nanoparticles with Immune Checkpoint Inhibitors 15.6.2.3 Combination Therapy with Immune Checkpoint Inhibitors Loaded Nanoparticles 15.6.3 siRNA Targeting PD-1/PD-L1 Immune Checkpoint 15.7 The Basic Mechanism of IDO 15.7.1 Inhibitors Blocking IDO 15.7.2 Combination Therapies Based on IDO Blockade 15.7.3 siRNA Targeting IDO Immune Checkpoint 15.8 C D47, CD40, and 4-1BB 15.9 Opportunities for Improving Efficacy of Immune Checkpoint Inhibitors 15.10 Prospects for Immune Checkpoint Blockade 15.11 Targeted Delivery of Nanoparticles to Lymph Nodes and Immune Cells 15.12 Nanoparticles Influencing the Tumor Microenvironment for Immunotherapy Enhancement. 15.13 Nanoparticles in Enhancing Adoptive Cell Therapy 15.14 Nucleic Acid-Based Nanovaccines 15.14.1 Polymeric Nanoparticles 15.14.1.1 siRNA Polymeric Nanoparticles 15.14.1.2 Oligodeoxynucleotide (ODN) Polymeric Nanoparticles 15.14.1.3 pDNA Polymeric Nanoparticles 15.14.2 Lipid-Based Nanoparticles (LNPs) 15.14.2.1 siRNA LNPs 15.14.2.2 Oligonucleotides LNPs 15.14.2.3 pDNA LNPs 15.14.2.4 mRNA LNPs 15.15 Monoclonal Antibody (mAb) 15.16 Small Molecule Nanomedicines 15.17 Conclusion, Challenges, and Perspective 15.18 Future Directions References List of Abbreviations Index