دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Mahendra Rai (editor). Kamel Ahmed Abd-elsalam (editor)
سری:
ISBN (شابک) : 0128179988, 9780128179987
ناشر: Academic Pr
سال نشر: 2019
تعداد صفحات: 523
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 15 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Nanomycotoxicology: Treating Mycotoxins in the Nano Way به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نانومیکوتوکسیکولوژی: درمان مایکوتوکسین ها به روش نانو نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Nanomycotoxicology: Treating Mycotoxins in Nanoway نقش نانوتکنولوژی در تشخیص، سمیت و مدیریت انواع مختلف مایکوتوکسین ها را مورد بحث قرار می دهد. بخشها موضوع نانومیکوتوکسیکولوژی، کاربرد نانوتکنولوژی برای روشهای تشخیصی سریعتر، مقرونبهصرفهتر و دقیقتر مایکوتوکسینها و قارچهای سمزا، و کاربرد نانوتکنولوژی برای مدیریت قارچهای قارچزا را پوشش میدهند. موضوعات جدیدی مانند کاربرد نانوتکنولوژی در مدیریت بیماری، پیشبینی بیماری و مقاومت در برابر بیماری، تشخیص مایکوتوکسین و تکنیکهای نانوتشخیصی و مولکولی نیز ارائه شده است.
با کمکهای فصلی گروهی از کارشناسان بینالمللی، این کتاب یک مرجع بینرشتهای را برای دانشمندان و محققانی که در زمینه سمشناسی قارچی، نانوتکنولوژی، قارچشناسی، علوم گیاهی و ایمنی غذا کار میکنند، ارائه میکند. علاوه بر این، این ابزار مفیدی برای دانشمندان صنعتی خواهد بود که در حال بررسی فناوریها هستند تا دانش نانو سم شناسی و ایمنی نانو خود را به روز کنند.
Nanomycotoxicology: Treating Mycotoxins in Nanoway discusses the role of nanotechnology in the detection, toxicity and management of different types of mycotoxins. Sections cover the topic of nanomycotoxicology, the application of nanotechnology for quicker, more cost-effective and precise diagnostic procedures of mycotoxins and toxicogenic fungi, and the application of nanotechnology for the management of mycotoxigenic fungi. New topics, such as the application of nanotechnology in disease management, disease forecasting, and disease resistance, mycotoxin detection, and nanodiagnostic and molecular techniques are also presented.
With chapter contributions from an international group of experts, this book presents an interdisciplinary reference for scientists and researchers working in mycotoxicology, nanotechnology, mycology, plant science, and food safety. In addition, it will be a useful tool for industrial scientists investigating technologies to update their nanotoxicology and nanosafety knowledge.
Cover Nanomycotoxicology: Treating Mycotoxins in the Nano Way Copyright List of contributors Preface 1 - An introduction to nanomycotoxicology 1. Introduction 2. Mycotoxicogenic fungi 3. Mycotoxins 4. Mycotoxicoses 5. Nanomycotoxicology References Section I: Detection 2 - Role of nanotechnology in the detection of mycotoxins: a smart approach 1. Introduction 2. Important mycotoxins: occurrence and toxicity 2.1 Aflatoxins 2.2 Ochratoxins 2.3 Fumonisins 2.4 Trichothecenes 2.5 Zearalenone 3. Conventional methods for the detection of mycotoxins 4. Role of nanotechnology in the detection of mycotoxins: a smart approach 4.1 Nanosensors for the detection of mycotoxins 4.2 Nanodiagnostic kit for mycotoxin detection in crops 4.3 Nanosensors for the detection of mycotoxins in packaged food 4.4 Electronic nose for the detection of mycotoxins 4.5 Electronic tongue for the detection of mycotoxins 5. Conclusion References 3 - Aptamer-based biosensors for mycotoxin detection 1. Introduction 2. Mycotoxins—general characterization 3. Aptamers for mycotoxin binding 4. Aptasensors for mycotoxin determination 4.1 Electrochemical aptasensors 4.2 Optical aptasensors 4.3 Other principles of signal transduction 5. Conclusion Acknowledgments References 4 - Immunochromatographic techniques for mycotoxin analysis 1. Introduction 2. Immunochromatographic test strip 2.1 Lateral flow immunochromatographic assay 2.2 Dipstick 2.3 Microfluidics 3. Advantages of lateral flow immunoassay 4. Materials in lateral flow immunoassay 4.1 Sample pad 4.2 Membrane 4.3 Conjugate pad 4.4 Wick 4.5 Plastic adhesive backing card 4.6 Labels 4.6.1 Nanoparticles 4.6.1.1 Gold nanoparticles 4.6.1.2 Quantum dots beads 4.6.1.3 Magnetic nanoparticles 5. Lateral flow immunoassay types 5.1 Sandwich assay 5.2 Competitive assay 6. Application of immunochromatographic test strip 7. Conclusions References Further reading 5 - Magnetic nanomaterials for purification, detection, and control of mycotoxins 1. Introduction 2. Mycotoxin extraction and purification 2.1 Magnetic solid-phase extraction 2.2 MWCNT magnetic nanocomposites 3. Mycotoxin detection 3.1 Magnetic nanoparticle-based ELISA 3.2 Magnetic nanoparticles HPLC-based assay 3.3 Immunomagnetic nanoparticle-based assay 3.4 Magnetic micromotors 3.5 Magnetic nanoparticle-based aptasensor 3.6 Magnetic molecularly imprinted polymers 3.7 Other mycotoxins detection techniques 3.7.1 A chemiluminescence immunoassay 3.7.2 Surface-enhanced Raman scattering 3.7.3 Nanobody 3.7.4 Bio-bar code method 3.7.5 Giant magnetoresistive detection 4. Mycotoxin control 4.1 Magnetic nanocomposites 4.2 Magnetic nanoadsorbent 5. Conclusion and future trends Acknowledgments References Section II: Synthesis, toxicity, and management 6 - Mycotoxin-induced toxicities and diseases 1. Introduction 2. Toxicity of aflatoxin 2.1 Genotoxicity 2.2 Teratogenicity 2.3 Immunotoxicity 2.4 Nephrotoxicity 2.5 Hepatogastrointestinal toxicity 2.6 Neurotoxicity 3. Toxicity of ochratoxin 3.1 Genotoxicity 3.2 Teratogenicity 3.3 Immunotoxicity 3.4 Nephrotoxicity and kidney cancer 3.5 Hepatotoxicity 3.6 Neurotoxicity 4. Toxicity of fumonisin 4.1 Genotoxicity 4.2 Teratogenicity 4.3 Immunotoxicity 4.4 Nephrotoxicity 4.5 Hepatogastrointestinal toxicity 4.6 Neurotoxicity 4.7 Pulmonary and cardiovascular toxicity 5. Toxicity of zearalenone 5.1 Genotoxicity 5.2 Teratogenicity 5.3 Immunotoxicity 5.4 Nephrotoxicity 5.5 Hepatogastrointestinal and bronchial toxicity 5.6 Pulmonary and cardiovascular toxicity 5.7 Neurotoxicity 6. Conclusion References 7 - Green nanotechnology: nanoformulations against toxigenic fungi to limit mycotoxin production 1. Introduction 2. Major mycotoxins 2.1 Aflatoxins 2.2 Ochratoxins 2.3 Fumonisins 2.4 Zearalenone 2.5 Trichothecenes 3. Medicinal plants 3.1 Phytochemicals against mycotoxigenic fungi 3.2 Challenges of phytofungicides 4. Green chemistry principles 4.1 Metallic nanofungicides 4.2 Polymeric nanofungicides 4.3 Hybrid nanofungicides 5. Nanofunigicides mode of action against toxigenic fungi 5.1 Disturb cell wall integrity 5.2 ROS accumulation 5.3 Mitochondrial disruption 5.4 Caspase cascade 5.5 Phosphatidylserine externalization, DNA fragmentation, and chromatin condensation 5.6 Other activity: biofilm growth inhibition 6. Conclusion References Further reading 8.- Mycotoxins: decontamination and nanocontrol methods 1. Introduction 2. Prevention of contamination 3. Mycotoxin detoxification 3.1 Detoxification by agricultural by-products 3.2 Detoxification by antioxidant molecules 3.3 Detoxification by microorganisms 3.4 Detoxification by medicinal plants, edible fungi, and spices 3.5 Detoxification by chemical and physical methods 4. A new approach for detoxification with nanoparticles 4.1 Inhibition of fungal growth 4.2 Mycotoxin adsorption 4.3 Mycotoxin elimination 5. Conclusion References 9 - Heat resistant fungi, toxicity and their management by nanotechnologies 1. The ecology of heat resistant fungi 2. Heat resistance of fungi and the affecting factors 3. Food spoilage caused by heat resistant fungi 4. Growth control of the heat resistant fungi in foods 5. Metabolites of heat resistant fungi 6. Enzymes 6.1 Pectinases 6.2 Proteinases 6.3 Amylases 7. Mycotoxins 7.1 Patulin 7.2 Byssochlamic acid 7.3 Byssotoxin A (assymetrin, variotin) 7.4 Tremorgenic mycotoxins 7.5 Other mycotoxins 8. Less common heat resistant fungi 8.1 Dichotomomyces cejpii (Miľko) Scott=Aspergillus cejpii (Miľko) Samson, Varga, Visagie et Houbraken 8.2 Eupenicillium baarnense (van Beyma) Stolk et Scott 8.3 Talaromyces avellaneus (Thom et Turesson) C. R. Benjamin 8.4 Talaromyces bacillisporus (Swift) C. R. Benjamin 8.5 Talaromyces emersonii Stolk 9. Nanotechnology and food/feed contamination by fruit-related fungi or their metabolites 10. Nano-aptasensing for analysis of mycotoxins common in fruits 11. Conclusion References 10 - Application of nanoparticles in inhibition of mycotoxin-producing fungi 1. Introduction 2. Mycotoxin-producing fungi 3. Types of nanoparticles and their application for inhibition of fungal growth 4. Action mechanism of nanoparticles against mycotoxic fungi 5. Future perspectives 6. Conclusion Acknowledgments References 11 - Metal nanoparticles for management of mycotoxigenic fungi and mycotoxicosis diseases of animals and poultry 1. Introduction 2. Synthesis and characterization of metal nanoparticles 2.1 Physical and chemical synthesis of metal nanoparticles 2.2 Biosynthesis of metal nanoparticles 2.3 Characterization of metal nanoparticles [45] 3. Mycosis by Mycotoxic fungi in animal and poultry 4. Mycotoxicosis in animal and poultry 5. Efficacy of metal nanoparticles in management of mycotic diseases in animals 6. Amelioration of the toxic effects of mycotoxins in animals by metal nanoparticles 7. Toxicity of metal nanoparticles 8. Conclusion and future perspectives Acknowledgments References 12 - The efficacy of mycotoxin-detoxifying and biotransforming agents in animal nutrition 1. Introduction 2. Controlling mycotoxins by nontoxic mold strains 2.1 Adsorbing agents 2.2 Biotransforming agents 2.3 Benefit/risk assessment 3. Nanoapproaches for mycotoxin risk elimination 3.1 Antifungal nanomaterials cause mold inhibition and mycotoxin production 4. Conclusion References 13 - Nanomaterials and ozonation: safe strategies for mycotoxin management 1. Introduction 2. Zinc nanoparticles 3. Silver nanoparticles 4. Selenium nanoparticles 5. Copper nanoparticles 6. Nanoemulsion 7. Nanoadsorbents 8. Superoxide agent (ozonation) 9. Ozonation advantages 10. Ozonizers 11. Ozonation for detoxification of aflatoxins 12. Ozonation for detoxification of trichothecenes 13. Ozonation for detoxification of fumonisin 14. Ozonation for detoxification of zearalenone 15. Ozonation for detoxification of ochratoxin A 16. Conclusion and future trends References 14 - Impact of nanoparticles on toxigenic fungi 1. Introduction 2. Impact of essential oils on toxigenic fungi and production of toxins 2.1 Nanoformulations improving impact of essential oils on toxigenic fungi 3. Impact of metal nanoparticles on toxigenic fungi 3.1 Silver nanoparticles 3.2 Gold nanoparticles 3.3 Copper nanoparticles 3.4 Zinc nanoparticles 3.5 TiO2 nanoparticles 3.6 Iron nanoparticles 4. Nonmetal nanoparticles 5. Carbon-based nanoparticles 6. Conclusions Acknowledgments References 15 - Nanocomposites: synergistic nanotools for management of mycotoxigenic fungi 1. Introduction 2. Adverse effects of widespread mycotoxins on human and animal health 3. Polymeric matrices 3.1 Chitosan-based matrices 3.2 Other natural matrices 3.3 Semisynthetic and synthetic matrices 4. Silica-based NCPs and their hybrids 5. Carbon-based NCPs and their hybrids 6. Metal-based NCPs and their hybrids 7. Conclusions Acknowledgments References 16 - Nanotechnological methods for aflatoxin control 1. Introduction 2. Nanoparticles and their properties 2.1 Metal nanoparticles 2.2 Nanocarbons 2.3 Chitosan nanoparticles 3. Effect of nanoparticles on aflatoxin reduction 4. Conclusion References 17 - Antifungal and filmogenic properties of micro- and nanostructures of chitosan and its derivatives 1. Introduction 2. Antifungal activity of chitosan and its oligomers 3. Antifungal activity of micro- and nanostructures of chitosan 4. Postharvest quality of plant products treated with of chitosan 5. Chitosan treatment in some fungal species and changes in hyphal morphology 6. Defense mechanisms in plants elicited by chitosan, microchitosan, nanochitosan, and chitooligomers treatment 7. Antimicrobial properties and mode of action of micro- and nanostructures of chitosan 8. Conclusions and future perspectives References 18 - Nanoparticles and gene silencing for suppression of mycotoxins: what we know and what we should know? 1. Introduction 2. How does RNAi work? 3. RNAi mechanism in management of toxicogenic fungi 4. Transport of siRNA between the host plant cells and the mycotoxigenic fungi 5. Vesicle-mediated RNA transport 6. Transporter-mediated RNA uptake 7. RNAi transmission inside plants 8. RNAi-based approaches in control of toxicogenic fungi 9. RNAi in the field 10. Nanotools to improve RNAi efficiency 10.1 Nanoparticles 10.2 Chemical modifications 10.2.1 RNAi disadvantages 10.3 Risk assessment of RNAi application 11. Conclusion and future perspectives Acknowledgments References 19 - Nanostructure self-assembly for direct nose-to-brain drug delivery: a novel approach for cryptococcal meningitis 1. Introduction 2. Cryptococcal meningitis 3. Treatment 3.1 Amphotericin B 4. Flucytosine 5. Azoles 6. General approach 7. Nose-to-brain delivery 8. Nose-to-brain stimuli-responsive systems 8.1 Thermally triggered systems 8.2 pH-triggered systems 9. Liposomes 10. Self-emulsifying drug delivery systems 11. Liquid crystals 12. Dendrimers 13. Nose-to-brain dendrimer drug delivery 14. Concluding remarks and perspectives References Further reading 20 - Potent application of nitric oxide–releasing nanomaterials against toxigenic fungi and their mycotoxins 1. Introduction 2. Chemistry and biology of NO 3. NO donors 4. S-nitrosothiols 5. Organic nitrates (nitroglycerin (glyceryl trinitrate) and isosorbide mononitrate) 6. Sodium nitroprusside 7. N-diazeniumdiolates 8. NO and nanomaterials 9. Functionalized metallic nanoparticles 10. Porous silica nanoparticles 11. Polymeric nanoparticles 12. Dendrimers 13. Micelles 14. NO and fungi 15. How does NO exert its antifungal activity? 16. Conclusions References Index A B C D E F G H I K L M N O P Q R S T U V W X Z Back Cover