دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Parvaiz Ahmad, Nawal Kishore Dubey, Durgesh Kumar Tripathi, Shivesh Sharma سری: ISBN (شابک) : 0128114886, 9780128114889 ناشر: Academic Press سال نشر: 2018 تعداد صفحات: 366 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 12 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Nanomaterials in Plants, Algae and Microorganisms: Concepts and Controversies به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نانومواد در گیاهان، جلبک ها و میکروارگانیسم ها: مفاهیم و اختلافات نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
نانومواد در گیاهان، جلبک ها و میکروارگانیسم ها: مفاهیم و بحث ها: جلد 2 نه تنها تمام فناوری های جدید مورد استفاده در سنتز نانوذرات را پوشش می دهد، بلکه پاسخ آنها را بر روی گیاهان، جلبک ها و میکروارگانیسم های موجود در اکوسیستم های آبی نیز آزمایش می کند. برخلاف اکثر آثار در این زمینه، این کتاب به طور انحصاری بر موجودات برتر تمرکز ندارد. در عوض، اشکال زندگی کوچکتری را که آنها از آنها تغذیه می کنند را بررسی می کند. موضوعات شامل تأثیرات رشد گیاهان، چگونگی جذب نانوذرات مختلف توسط زیستها، تأثیر فلزات مختلف از جمله نقره و فلزات خاکی کمیاب بر موجودات زنده، و اثرات نانوذرات بر روی اکوسیستمهای آبی به عنوان یک کل است. از آنجایی که محصولات مبتنی بر فناوری نانو به یک صنعت تریلیون دلاری تبدیل شدهاند، نیاز به درک پیامدهای آن بر سلامت جانوران و اکوسیستمهای ما وجود دارد زیرا زمین به طور فزایندهای با این مواد غرق میشود. مسائل مربوط به نانوذرات را در ارگانیسمهای سادهتر و اکوسیستمهای آنها پوشش میدهد. از کارشناسان جهانی برای کمک به افزایش درک مکانیسمهای رابط در سطوح فیزیولوژیکی، بیوشیمیایی، مولکولی و حتی ژنومی و پروتئومی بین ENP و سیستمهای بیولوژیکی استفاده میکند. انجام در این موضوع نیازهای تحقیقاتی آینده و چالش های علمی را که هنوز در تعاملات نانوذرات و موجودات زنده وجود دارد روشن می کند.
Nanomaterials in Plants, Algae and Microorganisms: Concepts and Controversies: Volume 2 not only covers all the new technologies used in the synthesis of nanoparticles, it also tests their response on plants, algae and micro-organisms in aquatic ecosystems. Unlike most works in the field, the book doesn't focus exclusively on the higher organisms. Instead, it explores the smaller life forms on which they feed. Topics include the impacts of plant development, how different nanoparticles are absorbed by biota, the impact different metals-including silver and rare earth metals-have on living organisms, and the effects nanoparticles have on aquatic ecosystems as a whole. As nanotechnology based products have become a trillion-dollar industry, there is a need to understand the implications to the health of our biota and ecosystems as the earth is increasingly inundated with these materials. Covers the issues of nanoparticles on more simple organisms and their ecosystems Draws upon global experts to help increase understanding of the interface mechanisms at the physiological, biochemical, molecular, and even genomic and proteomic level between ENPs and biological systems Provides a critical assessment of the progress taking place on this topic Sheds light on future research needs and scientific challenges that still exist in nanoparticle and living organism interactions
Cover Nanomaterials in Plants, Algae, and Microorganisms: Concepts and Controversies: Volume 2 Copyright Dedication List of Contributors 1 . Phytotoxic Properties of Zinc and Cobalt Oxide Nanoparticles in Algaes 1.1 Introduction 1.2 Production and Applications of ZnO and CoO Nanoparticles 1.3 Methods to Assess Toxicity of Metal Oxide Nanoparticles in Algae 1.3.1 Damage to Cell Wall Integrity 1.3.2 Oxidative Damage 1.4 Factors Influencing Phytotoxicity of ZnO and CoO Nanoparticles 1.4.1 Physicochemical Characteristics of Nanomaterials 1.4.2 Processes Affecting Stability of Nanoparticles and Toxicity 1.4.3 Environmental Factors 1.5 Toxicity of Zinc and Cobalt Oxide Nanoparticles: Possible Mechanisms 1.5.1 Dissolution 1.5.2 Aggregation 1.5.3 Adsorption 1.5.4 Interaction, Entry, and Toxic Impact 1.5.5 Photo-Induced Toxicity 1.6 Toxicity of CoO Nanoparticles 1.7 Future Research Directions 1.8 Conclusion References 2 . Carbon Nanotubes as Plant Growth Regulators: Impacts on Growth, Reproductive System, and Soil Microbial Community 2.1 Introduction 2.2 Carbon Nanotubes: Uptake and Translocation 2.3 Release and Uptake of Carbon Nanotubes 2.4 Role of Carbon Nanotubes 2.4.1 Impact of Carbon Nanotubes on Soil and Pesticide Accumulation 2.4.2 Impact of Carbon Nanotubes on Wastewater Treatment 2.4.3 Role of Carbon Nanotubes in the Production of Synthetic Plant Hormone 2.4.4 Role of Carbon Nanotubes in Seed Germination 2.4.5 Carbon Nanotubes as Plant Growth Regulators 2.4.6 Role of Carbon Nanotubes in the Microbial Community 2.5 Industrial Application of Carbon Nanotubes 2.6 Conclusion References 3 . Zinc Oxide Nanoparticle-Induced Responses on Plants: A Physiological Perspective 3.1 Introduction 3.2 Properties of ZnO NPs 3.3 Synthesis of ZnO NPs 3.3.1 Physical Methods 3.3.2 Chemical Methods 3.3.3 Biological Method or Green Synthesis 3.3.3.1 Plant Extract 3.4 Positive Impacts of ZnO NPs on Plants 3.5 Negative Impacts of ZnO NPs on Plants 3.6 Conclusion References Further Reading 4 . Effects of Nanoparticles in Plants: Phytotoxicity and Genotoxicity Assessment 4.1 Introduction 4.2 Plant Uptake of NPs 4.3 Phytotoxicity and Genotoxicity Induction and Assessment 4.3.1 Plant Bioassays 4.4 Phytotoxicity and Genotoxicity of the Most Widespread Nanoparticles 4.4.1 Phytotoxic and Genotoxic Effects of Silica NPs 4.4.2 Phytotoxicity and Genotoxicity of TiO2 NPs 4.4.3 Genotoxicity of ZnO NPs 4.4.4 Genotoxicity of Aluminum Oxide NPs 4.4.5 Genotoxicity of Carbon-Based NPs 4.4.6 Genotoxicity of CeO2 NPs 4.4.7 Genotoxicity of CuO NPs 4.4.8 Genotoxicity of Ag NPs 4.5 Conclusion References 5 . Industrial Nanoparticles and Their Influence on Gene Expression in Plants 5.1 Introduction 5.2 Basic Principle Behind the Study 5.2.1 An Overview 5.2.2 Mechanism and Hypothesis 5.3 Conclusion and Future Perspective References 6 . Role of Nanoparticles on Photosynthesis: Avenues and Applications 6.1 Introduction 6.2 Nanoparticles and Growth of Plants 6.3 Nanoparticles and Photosynthesis 6.3.1 Light-Dependent Reactions 6.3.2 Carbon Dioxide Fixation Reactions 6.4 Nanomaterials and Photosynthesis Under Abiotic Stresses 6.5 Nanoparticles and Yield of Plants 6.6 Conclusion and Future Prospects References Further Reading 7 . Nanoparticle-Induced Ecotoxicological Risks in Aquatic Environments: Concepts and Controversies 7.1 Introduction 7.2 Nanoparticle Toxicity Determination 7.2.1 Nanoparticle Engineering 7.2.2 Comparative Approaches Among Engineered Nanoparticles 7.2.3 Structural and Functional Aspects of Engineered Nanoparticles 7.3 Understanding the Mechanisms of Engineered Nanoparticle Toxicity 7.3.1 Oxidative Stress Mediated By Engineered Nanoparticles 7.3.2 Light-Induced Activity of Engineered Nanoparticles 7.3.3 Adsorption Properties in Engineered Nanoparticles 7.3.4 Interaction of Engineered Nanoparticles With Environmental Materials 7.4 Engineered Nanoparticle Toxicity Across the Aquatic Food Web 7.4.1 Engineered Nanoparticle Toxicity in Fish 7.4.2 Engineered Nanoparticle Toxicity in Aquatic Invertebrates 7.4.3 Engineered Nanoparticle Toxicity in Phytoplanktons 7.4.4 Engineered Nanoparticles Toxicity in Aquatic Plants 7.5 Engineered Nanoparticles in the Ecological Cycle 7.6 Conclusion and Future Perspectives References 8 . Phytotoxicity of Silver Nanoparticles to Aquatic Plants, Algae, and Microorganisms 8.1 Introduction 8.2 Environmental Concentration of Silver Nanoparticles 8.3 Silver Nanoparticles\' Fate in Water 8.4 Importance of Shape and Size for Silver Nanoparticles\' Toxicity in Photosynthetic Organisms 8.5 Aquatic Photosynthetic System 8.6 Effects of Silver Ions on the Aquatic Photosynthetic System 8.7 Mechanisms of Uptake into Aquatic Photosynthetic Organisms 8.8 Silver Nanoparticles\' Effects on Aquatic Plants 8.9 Silver Nanoparticles\' Effects on Algae 8.10 Silver Nanoparticles\' Effects on Cyanobacteria 8.11 Silver Nanoparticles\' Effects on Phytoplankton 8.12 Silver Nanoparticles\' Bioaccumulation and Biomagnification 8.13 Biosynthesis of Silver Nanoparticles in Cyanobacteria and Microalgae 8.14 Discussion 8.15 Conclusion and Future Prospects References Further Reading 9 . Therapeutic Potential of Plant-Based Metal Nanoparticles: Present Status and Future Perspectives 9.1 Introduction 9.2 Synthesis of Nanomaterials 9.2.1 Traditional or Chemical Methods for Synthesis of Metal-Based Nanoparticles 9.2.2 Bottom-Up Approach 9.2.3 Top-Down Approach 9.3 Biological Synthesis of Metal-Based Nanoparticles 9.3.1 Plant-Based Green Synthesis of Nanoparticles 9.3.2 Mode of Biosynthesis of Plant-Based Nanoparticles 9.3.3 Applications of Plant-Based Metal-Based Nanoparticles 9.4 Antifungal Activity of Nanoparticles 9.5 Mechanism Underlying the Antifungal Activity of Nanoparticles 9.6 Limitations in Practical Use of Nanoparticles for Antifungal Activity 9.7 Conclusion References Further Reading 10 . Antifungal Impact of Nanoparticles Against Different Plant Pathogenic Fungi 10.1 Introduction to Disease-Causing Plant Microbes 10.2 Various Technologies Used for Control of Plant Pathogens 10.2.1 Physical Methods 10.2.2 Chemical Methods 10.2.3 Biological Methods 10.3 Antimicrobial Activity of Nanoparticles 10.3.1 Antimicrobial Activity of Silver Nanoparticles 10.3.2 Antifungal Activity of Silver Nanoparticles 10.3.2.1 Mechanism of Antifungal Activity 10.4 Nanoparticles Against Plant Pathogens 10.5 Oxide Nanoparticles 10.6 Other Nanoparticles Used for Plant Pathogens Control 10.7 Conclusion and Future Prospects References Further Reading 11 . Synthesis of Nanoparticles Utilizing Sources From the Mangrove Environment and Their Potential Applications: an Overview 11.1 Introduction 11.2 Synthesis of Nanoparticles from Various Sources in the Mangrove Environment 11.2.1 Synthesis of Nanoparticles Using Bacteria 11.2.2 Synthesis of Nanoparticles Using Fungi 11.2.3 Synthesis of Nanoparticles Using Plants 11.2.4 Synthesis of Nanoparticles Using Other Sources 11.3 Applications of Nanoparticles Synthesized Using Mangrove Environment Sources 11.3.1 Biomedical Applications 11.3.2 Agricultural Applications 11.3.3 Industrial Applications 11.3.4 Other Applications 11.4 Future Prospects 11.5 Conclusion References Further Reading 12 . Recent Developments in Green Synthesis of Metal Nanoparticles Utilizing Cyanobacterial Cell Factories 12.1 Introduction 12.2 Bionanotechnology 12.2.1 Types of Nanoparticles 12.2.2 Techniques Used for the Characterization of Nanoparticles 12.3 Cyanobacterial “Cell Factories” and Bionanotechnology 12.4 Mechanism of Green Synthesis of Metal Nanoparticles 12.5 Recent Developments in Green Synthesis of Metallic Nanoparticles Utilizing Cyanobacteria 12.6 Applications of Nanotechnology 12.7 Conclusion and Future Prospects References Further Reading 13 . Chitosan and Its Nanocarriers: Applications and Opportunities 13.1 Introduction 13.2 Chitosan-Based Nanomaterials and Their Biological Activities 13.2.1 Use of Chitosan-Based Nanomaterials in Plants 13.2.1.1 Promotion of Seedling Growth and Development 13.2.1.2 Physiological Response 13.2.1.3 Plant Nutrient Uptake 13.2.1.4 Present Status and Future Prospects of Chitosan-Based Nanomaterials in Plants 13.2.2 Antimicrobial Activity of Chitosan-Based Nanomaterials 13.2.3 Antibacterial and Antifungal Activity of Chitosan-Based Nanomaterials 13.2.4 Antiviral Activity of Chitosan-Based Nanomaterials 13.3 Carboxymethyl Chitosan: One of the Prominent Chitosan Derivatives 13.3.1 Physicochemical Properties of Carboxymethyl Chitosan 13.3.1.1 Moisture Retention 13.3.1.2 Chelating and Associated Properties 13.3.2 Biological Properties of Carboxymethyl Chitosan 13.3.2.1 Antimicrobial Effects 13.3.2.2 Antioxidant Activity 13.3.2.3 Antiapoptotic Effect 13.3.2.4 Modulation of Cell Functioning 13.3.3 Applications of Carboxymethyl Chitosan 13.3.3.1 Cancer Treatment 13.3.3.2 Bioimaging 13.3.3.3 Sustainable Chemistry 13.3.3.4 Cosmetics 13.3.3.5 Biosensors 13.3.3.6 DNA Delivery 13.3.3.7 Permeation Enhancer 13.3.3.8 Wound-Healing Agents 13.3.3.9 Other Uses 13.4 Nanovehicles for Delivery of Specific Drugs 13.4.1 Anticancerous and Antiinflammatory Drugs 13.4.2 Antifungal and Antimicrobial Drugs 13.4.3 Peptides and Vaccines 13.8 Conclusion References Further Reading 14 . Biosensor Technology—Advanced Scientific Tools, With Special Reference to Nanobiosensors and Plant- and Food-Based Biosensors 14.1 Introduction 14.2 Types of Biosensor 14.2.1 Nanobiosensors 14.2.2 Plants Engineered With a Specific Biosensor 14.2.3 Biosensors Based on Mode/Transducers 14.2.4 Biosensors Based on Receptors 14.3 Application of Biosensors 14.3.1 Biosensors Used for Quantification of Nitrates in Plants 14.3.2 Biosensors in Plant Disease Detection 14.3.3 Food Safety and Contaminations (Toxin and Xenobiotic Compounds) 14.3.4 Maintaining Food Quality 14.3.5 Process Control: Fermentation and Pasteurization 14.3.6 Biotechnology and Genetically Modified Organisms 14.4 Conclusion and Future Perspectives References 15 . Impact of Nanoparticles on Abiotic Stress Responses in Plants: an Overview 15.1 Introduction 15.2 Physiological Impacts of Nanoparticles on Plants 15.3 Impact of Nanoparticles on ROS and Antioxidant System 15.4 Nanoparticles and Metal Stress in Plants 15.5 Nanoparticles and Drought Stress in Plants 15.6 Nanoparticles and Salinity Stress 15.7 Nanoparticles and Other Abiotic Stresses 15.8 Conclusion and Perspectives References Further Reading 16 . Physicochemical Perturbation of Plants on Exposure to Metal Oxide Nanoparticle 16.1 Introduction 16.2 Sources of Metal Nanoparticles 16.2.1 Natural Sources 16.2.2 Dust Storms 16.2.3 Extraterrestrial Dust 16.2.4 Forest Fires 16.2.5 Volcanic Eruptions 16.2.6 Ocean and Water Evaporation 16.3 Anthropological Interventions 16.3.1 Fossil Fuel Combustion 16.3.2 Indoor Pollution 16.3.3 Cigarette Smoke 16.3.4 Construction and Demolition 16.3.5 Cosmetics and Other Consumer Products 16.3.6 Engineered Nanomaterials 16.4 Global Financial Status of Engineered Metal Nanoparticles 16.5 Fate of Engineered Nanoparticles 16.6 Physicochemical Stress in Plants: the Whys and the Wherefores 16.7 Major Metal Nanoparticles Affecting Plants 16.7.1 Silver Nanoparticles 16.7.2 Gold Nanoparticles 16.7.3 Titanium Nanoparticles 16.7.4 Copper Nanoparticles 16.7.5 Zinc Nanoparticle 16.7.6 Iron Nanoparticles 16.7.7 Magnesium Nanoparticle 16.7.8 Cerium Nanoparticles 16.7.9 Nickel Nanoparticles 16.7.10 Aluminium Nanoparticles 16.7.11 Cadmium Nanoparticles 16.7.12 Ytterbium, Lanthanum, and Gadolinium 16.8 Amelioration of Nanoparticle-Induced Damage to Plants 16.9 Conclusion References Index A B C D E F G H I K L M N O P Q R S T U V W X Y Z Back Cover