ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Nanomaterials in Plants, Algae and Microorganisms: Concepts and Controversies

دانلود کتاب نانومواد در گیاهان، جلبک ها و میکروارگانیسم ها: مفاهیم و اختلافات

Nanomaterials in Plants, Algae and Microorganisms: Concepts and Controversies

مشخصات کتاب

Nanomaterials in Plants, Algae and Microorganisms: Concepts and Controversies

ویرایش:  
نویسندگان: , , ,   
سری:  
ISBN (شابک) : 0128114886, 9780128114889 
ناشر: Academic Press 
سال نشر: 2018 
تعداد صفحات: 366 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 12 مگابایت 

قیمت کتاب (تومان) : 49,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 8


در صورت تبدیل فایل کتاب Nanomaterials in Plants, Algae and Microorganisms: Concepts and Controversies به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب نانومواد در گیاهان، جلبک ها و میکروارگانیسم ها: مفاهیم و اختلافات نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب نانومواد در گیاهان، جلبک ها و میکروارگانیسم ها: مفاهیم و اختلافات

نانومواد در گیاهان، جلبک ها و میکروارگانیسم ها: مفاهیم و بحث ها: جلد 2 نه تنها تمام فناوری های جدید مورد استفاده در سنتز نانوذرات را پوشش می دهد، بلکه پاسخ آنها را بر روی گیاهان، جلبک ها و میکروارگانیسم های موجود در اکوسیستم های آبی نیز آزمایش می کند. برخلاف اکثر آثار در این زمینه، این کتاب به طور انحصاری بر موجودات برتر تمرکز ندارد. در عوض، اشکال زندگی کوچکتری را که آنها از آنها تغذیه می کنند را بررسی می کند. موضوعات شامل تأثیرات رشد گیاهان، چگونگی جذب نانوذرات مختلف توسط زیست‌ها، تأثیر فلزات مختلف از جمله نقره و فلزات خاکی کمیاب بر موجودات زنده، و اثرات نانوذرات بر روی اکوسیستم‌های آبی به عنوان یک کل است. از آنجایی که محصولات مبتنی بر فناوری نانو به یک صنعت تریلیون دلاری تبدیل شده‌اند، نیاز به درک پیامدهای آن بر سلامت جانوران و اکوسیستم‌های ما وجود دارد زیرا زمین به طور فزاینده‌ای با این مواد غرق می‌شود. مسائل مربوط به نانوذرات را در ارگانیسم‌های ساده‌تر و اکوسیستم‌های آنها پوشش می‌دهد. از کارشناسان جهانی برای کمک به افزایش درک مکانیسم‌های رابط در سطوح فیزیولوژیکی، بیوشیمیایی، مولکولی و حتی ژنومی و پروتئومی بین ENP و سیستم‌های بیولوژیکی استفاده می‌کند. انجام در این موضوع نیازهای تحقیقاتی آینده و چالش های علمی را که هنوز در تعاملات نانوذرات و موجودات زنده وجود دارد روشن می کند.


توضیحاتی درمورد کتاب به خارجی

Nanomaterials in Plants, Algae and Microorganisms: Concepts and Controversies: Volume 2 not only covers all the new technologies used in the synthesis of nanoparticles, it also tests their response on plants, algae and micro-organisms in aquatic ecosystems. Unlike most works in the field, the book doesn't focus exclusively on the higher organisms. Instead, it explores the smaller life forms on which they feed. Topics include the impacts of plant development, how different nanoparticles are absorbed by biota, the impact different metals-including silver and rare earth metals-have on living organisms, and the effects nanoparticles have on aquatic ecosystems as a whole. As nanotechnology based products have become a trillion-dollar industry, there is a need to understand the implications to the health of our biota and ecosystems as the earth is increasingly inundated with these materials. Covers the issues of nanoparticles on more simple organisms and their ecosystems Draws upon global experts to help increase understanding of the interface mechanisms at the physiological, biochemical, molecular, and even genomic and proteomic level between ENPs and biological systems Provides a critical assessment of the progress taking place on this topic Sheds light on future research needs and scientific challenges that still exist in nanoparticle and living organism interactions



فهرست مطالب

Cover
Nanomaterials in Plants, Algae, and Microorganisms: Concepts and Controversies: Volume 2
Copyright
Dedication
List of Contributors
1 . Phytotoxic Properties of Zinc and Cobalt Oxide Nanoparticles in Algaes
	1.1 Introduction
	1.2 Production and Applications of ZnO and CoO Nanoparticles
	1.3 Methods to Assess Toxicity of Metal Oxide Nanoparticles in Algae
		1.3.1 Damage to Cell Wall Integrity
		1.3.2 Oxidative Damage
	1.4 Factors Influencing Phytotoxicity of ZnO and CoO Nanoparticles
		1.4.1 Physicochemical Characteristics of Nanomaterials
		1.4.2 Processes Affecting Stability of Nanoparticles and Toxicity
		1.4.3 Environmental Factors
	1.5 Toxicity of Zinc and Cobalt Oxide Nanoparticles: Possible Mechanisms
		1.5.1 Dissolution
		1.5.2 Aggregation
		1.5.3 Adsorption
		1.5.4 Interaction, Entry, and Toxic Impact
		1.5.5 Photo-Induced Toxicity
	1.6 Toxicity of CoO Nanoparticles
	1.7 Future Research Directions
	1.8 Conclusion
	References
2 . Carbon Nanotubes as Plant Growth Regulators: Impacts on Growth, Reproductive System, and Soil Microbial Community
	2.1 Introduction
	2.2 Carbon Nanotubes: Uptake and Translocation
	2.3 Release and Uptake of Carbon Nanotubes
	2.4 Role of Carbon Nanotubes
		2.4.1 Impact of Carbon Nanotubes on Soil and Pesticide Accumulation
		2.4.2 Impact of Carbon Nanotubes on Wastewater Treatment
		2.4.3 Role of Carbon Nanotubes in the Production of Synthetic Plant Hormone
		2.4.4 Role of Carbon Nanotubes in Seed Germination
		2.4.5 Carbon Nanotubes as Plant Growth Regulators
		2.4.6 Role of Carbon Nanotubes in the Microbial Community
	2.5 Industrial Application of Carbon Nanotubes
	2.6 Conclusion
	References
3 . Zinc Oxide Nanoparticle-Induced Responses on Plants: A Physiological Perspective
	3.1 Introduction
	3.2 Properties of ZnO NPs
	3.3 Synthesis of ZnO NPs
		3.3.1 Physical Methods
		3.3.2 Chemical Methods
		3.3.3 Biological Method or Green Synthesis
			3.3.3.1 Plant Extract
	3.4 Positive Impacts of ZnO NPs on Plants
	3.5 Negative Impacts of ZnO NPs on Plants
	3.6 Conclusion
	References
	Further Reading
4 . Effects of Nanoparticles in Plants: Phytotoxicity and Genotoxicity Assessment
	4.1 Introduction
	4.2 Plant Uptake of NPs
	4.3 Phytotoxicity and Genotoxicity Induction and Assessment
		4.3.1 Plant Bioassays
	4.4 Phytotoxicity and Genotoxicity of the Most Widespread Nanoparticles
		4.4.1 Phytotoxic and Genotoxic Effects of Silica NPs
		4.4.2 Phytotoxicity and Genotoxicity of TiO2 NPs
		4.4.3 Genotoxicity of ZnO NPs
		4.4.4 Genotoxicity of Aluminum Oxide NPs
		4.4.5 Genotoxicity of Carbon-Based NPs
		4.4.6 Genotoxicity of CeO2 NPs
		4.4.7 Genotoxicity of CuO NPs
		4.4.8 Genotoxicity of Ag NPs
	4.5 Conclusion
	References
5 . Industrial Nanoparticles and Their Influence on Gene Expression in Plants
	5.1 Introduction
	5.2 Basic Principle Behind the Study
		5.2.1 An Overview
		5.2.2 Mechanism and Hypothesis
	5.3 Conclusion and Future Perspective
	References
6 . Role of Nanoparticles on Photosynthesis: Avenues and Applications
	6.1 Introduction
	6.2 Nanoparticles and Growth of Plants
	6.3 Nanoparticles and Photosynthesis
		6.3.1 Light-Dependent Reactions
		6.3.2 Carbon Dioxide Fixation Reactions
	6.4 Nanomaterials and Photosynthesis Under Abiotic Stresses
	6.5 Nanoparticles and Yield of Plants
	6.6 Conclusion and Future Prospects
	References
	Further Reading
7 . Nanoparticle-Induced Ecotoxicological Risks in Aquatic Environments: Concepts and Controversies
	7.1 Introduction
	7.2 Nanoparticle Toxicity Determination
		7.2.1 Nanoparticle Engineering
		7.2.2 Comparative Approaches Among Engineered Nanoparticles
		7.2.3 Structural and Functional Aspects of Engineered Nanoparticles
	7.3 Understanding the Mechanisms of Engineered Nanoparticle Toxicity
		7.3.1 Oxidative Stress Mediated By Engineered Nanoparticles
		7.3.2 Light-Induced Activity of Engineered Nanoparticles
		7.3.3 Adsorption Properties in Engineered Nanoparticles
		7.3.4 Interaction of Engineered Nanoparticles With Environmental Materials
	7.4 Engineered Nanoparticle Toxicity Across the Aquatic Food Web
		7.4.1 Engineered Nanoparticle Toxicity in Fish
		7.4.2 Engineered Nanoparticle Toxicity in Aquatic Invertebrates
		7.4.3 Engineered Nanoparticle Toxicity in Phytoplanktons
		7.4.4 Engineered Nanoparticles Toxicity in Aquatic Plants
	7.5 Engineered Nanoparticles in the Ecological Cycle
	7.6 Conclusion and Future Perspectives
	References
8 . Phytotoxicity of Silver Nanoparticles to Aquatic Plants, Algae, and Microorganisms
	8.1 Introduction
	8.2 Environmental Concentration of Silver Nanoparticles
	8.3 Silver Nanoparticles\' Fate in Water
	8.4 Importance of Shape and Size for Silver Nanoparticles\' Toxicity in Photosynthetic Organisms
	8.5 Aquatic Photosynthetic System
	8.6 Effects of Silver Ions on the Aquatic Photosynthetic System
	8.7 Mechanisms of Uptake into Aquatic Photosynthetic Organisms
	8.8 Silver Nanoparticles\' Effects on Aquatic Plants
	8.9 Silver Nanoparticles\' Effects on Algae
	8.10 Silver Nanoparticles\' Effects on Cyanobacteria
	8.11 Silver Nanoparticles\' Effects on Phytoplankton
	8.12 Silver Nanoparticles\' Bioaccumulation and Biomagnification
	8.13 Biosynthesis of Silver Nanoparticles in Cyanobacteria and Microalgae
	8.14 Discussion
	8.15 Conclusion and Future Prospects
	References
	Further Reading
9 . Therapeutic Potential of Plant-Based Metal Nanoparticles: Present Status and Future Perspectives
	9.1 Introduction
	9.2 Synthesis of Nanomaterials
		9.2.1 Traditional or Chemical Methods for Synthesis of Metal-Based Nanoparticles
		9.2.2 Bottom-Up Approach
		9.2.3 Top-Down Approach
	9.3 Biological Synthesis of Metal-Based Nanoparticles
		9.3.1 Plant-Based Green Synthesis of Nanoparticles
		9.3.2 Mode of Biosynthesis of Plant-Based Nanoparticles
		9.3.3 Applications of Plant-Based Metal-Based Nanoparticles
	9.4 Antifungal Activity of Nanoparticles
	9.5 Mechanism Underlying the Antifungal Activity of Nanoparticles
	9.6 Limitations in Practical Use of Nanoparticles for Antifungal Activity
	9.7 Conclusion
	References
	Further Reading
10 . Antifungal Impact of Nanoparticles Against Different Plant Pathogenic Fungi
	10.1 Introduction to Disease-Causing Plant Microbes
	10.2 Various Technologies Used for Control of Plant Pathogens
		10.2.1 Physical Methods
		10.2.2 Chemical Methods
		10.2.3 Biological Methods
	10.3 Antimicrobial Activity of Nanoparticles
		10.3.1 Antimicrobial Activity of Silver Nanoparticles
		10.3.2 Antifungal Activity of Silver Nanoparticles
			10.3.2.1 Mechanism of Antifungal Activity
	10.4 Nanoparticles Against Plant Pathogens
	10.5 Oxide Nanoparticles
	10.6 Other Nanoparticles Used for Plant Pathogens Control
	10.7 Conclusion and Future Prospects
	References
	Further Reading
11 . Synthesis of Nanoparticles Utilizing Sources From the Mangrove Environment and Their Potential Applications: an Overview
	11.1 Introduction
	11.2 Synthesis of Nanoparticles from Various Sources in the Mangrove Environment
		11.2.1 Synthesis of Nanoparticles Using Bacteria
		11.2.2 Synthesis of Nanoparticles Using Fungi
		11.2.3 Synthesis of Nanoparticles Using Plants
		11.2.4 Synthesis of Nanoparticles Using Other Sources
	11.3 Applications of Nanoparticles Synthesized Using Mangrove Environment Sources
		11.3.1 Biomedical Applications
		11.3.2 Agricultural Applications
		11.3.3 Industrial Applications
		11.3.4 Other Applications
	11.4 Future Prospects
	11.5 Conclusion
	References
	Further Reading
12 . Recent Developments in Green Synthesis of Metal Nanoparticles Utilizing Cyanobacterial Cell Factories
	12.1 Introduction
	12.2 Bionanotechnology
		12.2.1 Types of Nanoparticles
		12.2.2 Techniques Used for the Characterization of Nanoparticles
	12.3 Cyanobacterial “Cell Factories” and Bionanotechnology
	12.4 Mechanism of Green Synthesis of Metal Nanoparticles
	12.5 Recent Developments in Green Synthesis of Metallic Nanoparticles Utilizing Cyanobacteria
	12.6 Applications of Nanotechnology
	12.7 Conclusion and Future Prospects
	References
	Further Reading
13 . Chitosan and Its Nanocarriers: Applications and Opportunities
	13.1 Introduction
	13.2 Chitosan-Based Nanomaterials and Their Biological Activities
		13.2.1 Use of Chitosan-Based Nanomaterials in Plants
			13.2.1.1 Promotion of Seedling Growth and Development
			13.2.1.2 Physiological Response
			13.2.1.3 Plant Nutrient Uptake
			13.2.1.4 Present Status and Future Prospects of Chitosan-Based Nanomaterials in Plants
		13.2.2 Antimicrobial Activity of Chitosan-Based Nanomaterials
		13.2.3 Antibacterial and Antifungal Activity of Chitosan-Based Nanomaterials
		13.2.4 Antiviral Activity of Chitosan-Based Nanomaterials
	13.3 Carboxymethyl Chitosan: One of the Prominent Chitosan Derivatives
		13.3.1 Physicochemical Properties of Carboxymethyl Chitosan
			13.3.1.1 Moisture Retention
			13.3.1.2 Chelating and Associated Properties
		13.3.2 Biological Properties of Carboxymethyl Chitosan
			13.3.2.1 Antimicrobial Effects
			13.3.2.2 Antioxidant Activity
			13.3.2.3 Antiapoptotic Effect
			13.3.2.4 Modulation of Cell Functioning
		13.3.3 Applications of Carboxymethyl Chitosan
			13.3.3.1 Cancer Treatment
			13.3.3.2 Bioimaging
			13.3.3.3 Sustainable Chemistry
			13.3.3.4 Cosmetics
			13.3.3.5 Biosensors
			13.3.3.6 DNA Delivery
			13.3.3.7 Permeation Enhancer
			13.3.3.8 Wound-Healing Agents
			13.3.3.9 Other Uses
	13.4 Nanovehicles for Delivery of Specific Drugs
		13.4.1 Anticancerous and Antiinflammatory Drugs
		13.4.2 Antifungal and Antimicrobial Drugs
		13.4.3 Peptides and Vaccines
	13.8 Conclusion
	References
	Further Reading
14 . Biosensor Technology—Advanced Scientific Tools, With Special Reference to Nanobiosensors and Plant- and Food-Based Biosensors
	14.1 Introduction
	14.2 Types of Biosensor
		14.2.1 Nanobiosensors
		14.2.2 Plants Engineered With a Specific Biosensor
		14.2.3 Biosensors Based on Mode/Transducers
		14.2.4 Biosensors Based on Receptors
	14.3 Application of Biosensors
		14.3.1 Biosensors Used for Quantification of Nitrates in Plants
		14.3.2 Biosensors in Plant Disease Detection
		14.3.3 Food Safety and Contaminations (Toxin and Xenobiotic Compounds)
		14.3.4 Maintaining Food Quality
		14.3.5 Process Control: Fermentation and Pasteurization
		14.3.6 Biotechnology and Genetically Modified Organisms
	14.4 Conclusion and Future Perspectives
	References
15 . Impact of Nanoparticles on Abiotic Stress Responses in Plants: an Overview
	15.1 Introduction
	15.2 Physiological Impacts of Nanoparticles on Plants
	15.3 Impact of Nanoparticles on ROS and Antioxidant System
	15.4 Nanoparticles and Metal Stress in Plants
	15.5 Nanoparticles and Drought Stress in Plants
	15.6 Nanoparticles and Salinity Stress
	15.7 Nanoparticles and Other Abiotic Stresses
	15.8 Conclusion and Perspectives
	References
	Further Reading
16 . Physicochemical Perturbation of Plants on Exposure to Metal Oxide Nanoparticle
	16.1 Introduction
	16.2 Sources of Metal Nanoparticles
		16.2.1 Natural Sources
		16.2.2 Dust Storms
		16.2.3 Extraterrestrial Dust
		16.2.4 Forest Fires
		16.2.5 Volcanic Eruptions
		16.2.6 Ocean and Water Evaporation
	16.3 Anthropological Interventions
		16.3.1 Fossil Fuel Combustion
		16.3.2 Indoor Pollution
		16.3.3 Cigarette Smoke
		16.3.4 Construction and Demolition
		16.3.5 Cosmetics and Other Consumer Products
		16.3.6 Engineered Nanomaterials
	16.4 Global Financial Status of Engineered Metal Nanoparticles
	16.5 Fate of Engineered Nanoparticles
	16.6 Physicochemical Stress in Plants: the Whys and the Wherefores
	16.7 Major Metal Nanoparticles Affecting Plants
		16.7.1 Silver Nanoparticles
		16.7.2 Gold Nanoparticles
		16.7.3 Titanium Nanoparticles
		16.7.4 Copper Nanoparticles
		16.7.5 Zinc Nanoparticle
		16.7.6 Iron Nanoparticles
		16.7.7 Magnesium Nanoparticle
		16.7.8 Cerium Nanoparticles
		16.7.9 Nickel Nanoparticles
		16.7.10 Aluminium Nanoparticles
		16.7.11 Cadmium Nanoparticles
		16.7.12 Ytterbium, Lanthanum, and Gadolinium
	16.8 Amelioration of Nanoparticle-Induced Damage to Plants
	16.9 Conclusion
	References
Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
Back Cover




نظرات کاربران