دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Rohit Srivastava, Sujit Kumar Debnath, Rajendra Prasad سری: ISBN (شابک) : 9781032344751, 9781003322368 ناشر: CRC Press سال نشر: 2024 تعداد صفحات: [375] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 25 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Nanomaterials in Healthcare به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نانومواد در بهداشت و درمان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Title Page Copyright Page Dedication Contents Preface Acknowledgments List of Reviewers Editors Contributors 1. Introduction to Nanomaterials and Their Scope in Drug Delivery 1.1. Introduction 1.2. Types of Nanoparticles 1.2.1. Metallic Nanoparticles 1.2.2. Lipid-Based Nanoparticles 1.2.3. Carbon-Based Nanoparticles 1.2.4. Polymer-Based Nanoparticles 1.2.5. Silica-Based Nanoparticles 1.3. Application of Nanoparticles 1.3.1. Antibacterial 1.3.2. Cancer 1.3.3. Neurodegenerative 1.3.4. Infectious Disease 1.3.5. Immunotherapy 1.4. Nanoparticles Toxicity 1.4.1. Metallic-Based Nanoparticles 1.4.2. Lipid-Based Nanoparticles 1.4.3. Silica-Based Nanoparticles 1.4.4. Carbon-Based Nanoparticles 1.4.5. Polymer-Based Nanoparticles 1.5. Prospects and Challenges References 2. Application of Nanomaterials in Medicine: A Clinical Perspective 2.1. Introduction 2.1.1. History of Nanomedicine 2.1.2. Advantages of Nanomaterials in Clinical Medicine 2.1.3. Disadvantages of Nanomaterials in Clinical Medicine 2.1.4. Latest Trends in Nanomedicine 2.2. Nanomaterials Used in Communicable Diseases 2.2.1. Tuberculosis 2.2.2. HIV/AIDS 2.2.3. Influenza 2.3. Nanomaterials Used in Non-Communicable Diseases 2.3.1. Cardiovascular Diseases 2.3.2. Diabetes 2.3.3. Neurodegenerative Diseases 2.3.4. Autoimmune Disorders 2.4. Nanomaterials Used in Cancer 2.5. Nanomaterials for Imaging, Screening, and Diagnosis 2.6. Tackling COVID-19 Using Nanotechnology 2.7. Nanomedicine and Associative Technologies 2.7.1. Additive Manufacturing 2.7.2. Artificial Intelligence, Machine Learning, and Bioinformatics 2.7.3. Robotics, Automation, and IoT 2.8. Ethical Concerns about Nanomedicines 2.9. Clinical Trials and Approvals of Nanomedicine 2.10. Conclusion References 3. Advancement of Polymer-Based Nanocarrier System in Drug Delivery 3.1. Introduction 3.2. Types of Polymer-Based Nanocarriers 3.2.1. Classification of Polymer Nanocarriers Based on Affinity to Water 3.2.1.1. Hydrophilic 3.2.1.2. Hydrophobic 3.2.1.3. Amphiphilic 3.2.2. Classification of Polymer Nanocarriers Based on Source 3.2.2.1. Natural 3.2.2.2. Synthetic 3.2.3. Classification of Polymer Nanocarriers Based on Charge 3.2.3.1. Cationic 3.2.3.2. Anionic 3.2.3.3. Charge reversible polymers 3.3. Application of Polymeric Nanoparticles in Drug Delivery 3.3.1. Oral Drug Delivery 3.3.2. Vaginal Drug Delivery 3.3.3. For Cancer Therapy 3.3.4. Ocular Delivery 3.4. Conclusion and Future Prospect References 4. Liposomes and Lipid Structures: Classification, Characterization, and Nanotechnology-Based Clinical Applications 4.1. Introduction 4.2. Need for Liposomes 4.3. Evolution through Advancements 4.3.1. Solid Lipid Nanoparticles (SLNs) 4.3.2. Nano Lipid Carriers (NLCs) 4.4. Conventional Methods for Liposome Preparation 4.4.1. Film-Hydration Method 4.4.2. Double-Emulsification Method 4.4.3. Reverse Phase Evaporation Method 4.4.4. Solvent Injection Method 4.4.5. Detergent Dialysis Method 4.5. Novel Methods for Liposome Preparation 4.5.1. Supercritical Fluid (SCF) Technology 4.5.2. Dual Asymmetric Centrifugation Techniques (DAC) 4.5.3. Membrane Contactor Technology 4.5.4. Microfluidic Technique 4.6. Characterization of Liposomes 4.6.1. Morphological Characterization 4.6.2. Stability Study 4.6.3. Encapsulation Efficiency 4.6.4. In Vitro Drug Release 4.6.5. Freeze-Drying 4.6.6. Miscellaneous Methods 4.7. Liposomes for Treatment of Various Diseases 4.7.1. Cancer 4.7.2. Reproductive Organs 4.7.3. Developmental Disorders 4.7.4. Arthritis and Bone Abnormalities 4.7.5. Wound Healing 4.7.6. Antimicrobial Diseases 4.7.7. Nervous System Disorders 4.8. Clinical Applications of Liposomes Concerning Nanotechnology 4.9. Future Prospective 4.10. Conclusion References 5. Functionalized Carbon-Based Nanoparticles for Biomedical Application 5.1. Introduction 5.2. Types and Properties of Carbon-Based Nanomaterials 5.2.1. Fullerenes 5.2.1.1. Structural dimension 5.2.1.2. Physical property 5.2.1.3. Mechanical property 5.2.1.4. Electrical property 5.2.1.5. Thermal property 5.2.1.6. Optical property 5.2.1.7. Chemical property 5.2.2. Carbon Nanotubes 5.2.2.1. Structural dimension 5.2.2.2. Physical property 5.2.2.3. Mechanical property 5.2.2.4. Electrical property 5.2.2.5. Thermal property 5.2.2.6. Optical property 5.2.2.7. Chemical property 5.2.3. Graphene and Its Derivatives 5.2.3.1. Structural dimension 5.2.3.2. Physical property 5.2.3.3. Mechanical property 5.2.3.4. Electrical property 5.2.3.5. Thermal property 5.2.3.6. Optical property 5.2.3.7. Chemical property 5.2.4. Nanodiamond 5.2.4.1. Structural dimension 5.2.4.2. Physical property 5.2.4.3. Mechanical property 5.2.4.4. Electrical property 5.2.4.5. Thermal property 5.2.4.6. Optical property 5.2.4.7. Chemical property 5.2.5. Carbon Dots 5.2.5.1. Structural dimension 5.2.5.2. Physical property 5.2.5.3. Mechanical property 5.2.5.4. Electrical property 5.2.5.5. Thermal property 5.2.5.6. Optical property 5.2.5.7. Chemical property 5.3. Synthesis of Functionalized Carbon-Based Nanoparticles 5.3.1. Synthesis 5.3.2. Exohedral Functionalization 5.3.2.1. Covalent functionalization 5.3.2.2. Non-covalent functionalization 5.3.3. Endohedral Functionalization 5.4. Risk-Assessment of Functionalized Carbon-Based Nanoparticles 5.5. Application of Functionalized CBNs 5.5.1. Biosensors 5.5.2. Drug Delivery 5.5.3. Therapy 5.5.3.1. Role in tissue engineering and regenerative medicine 5.5.3.2. Role as free radical scavengers 5.5.3.3. Role as an antimicrobial 5.5.3.4. Role in cancer therapy 5.6. Future Prospects and Challenges References 6. Engineered Magnetic Nanoparticles: Challenges and Prospects 6.1. Introduction 6.2. Synthesis of Magnetic Nanoparticles (MNPs) 6.2.1. Physical Method 6.2.2. Chemical Method 6.2.3. Biological Synthesis Method 6.3. Properties and Application 6.3.1. Characteristics of Magnetic Particles 6.3.1.1. Particle size 6.3.1.2. Particle density 6.3.1.3. Particle shape 6.3.1.4. Magnetic property 6.3.2. Application of Magnetic Nanoparticles 6.3.2.1. Hyperthermia 6.3.2.2. Photothermal therapy 6.3.2.3. Drug delivery 6.3.2.4. Infection treatments 6.3.2.5. Magnetic resonance imaging 6.4. Conclusion References 7. Nano Metal-Organic Frameworks as a Promising Candidate for Biomedical Applications 7.1. Introduction 7.2. Synthesis of NMOFs 7.2.1. Solvothermal Synthesis 7.2.2. Microemulsion Synthesis 7.2.3. Microwave-Assisted Synthesis 7.2.4. Ultrasound/Sonochemical Synthesis 7.2.5. Electrochemical Synthesis 7.2.6. Mechanochemical Synthesis 7.3. Biofunctionalization of NMOFs 7.4. NMOFs for Drug Delivery and Targeted Tumor Therapy 7.4.1. pH-Responsive Drug Delivery 7.4.2. Temperature-Responsive Drug Delivery 7.4.3. Ion-Responsive Drug Delivery 7.4.4. ATP-Responsive Drug Delivery 7.4.5. Redox-Responsive Drug Delivery 7.5. NMOFs for Bio-Imaging 7.6. Conclusions and Outlook Acknowledgments References 8. Porous Silica Nanoparticles for Targeted Bio-Imaging and Drug Delivery Applications 8.1. Introduction 8.2. Strategies for Functionalization of Silica Hybrid Nanocarriers 8.3. Drug Delivery Applications of Silica Nanohybrid 8.3.1. Silica Polymer Nanohybrid for Drug Delivery 8.3.2. Silica Nucleic Acid Nanohybrid for Drug Delivery 8.4. Silica Protein Nanohybrid for Drug Delivery 8.5. Silica Peptide Nanohybrid for Drug Delivery 8.6. Silica Quantum Dot for Drug Delivery 8.7. Silica Magnetic Nanohybrids for Drug Delivery 8.8. Clinical Trials for Silica-Based Nanoformulations 8.9. Conclusion References 9. Recent Advancement of Multifunctional ZnO Quantum Dots in the Biomedicine Field 9.1. Introduction 9.2. Structure, Properties, and Fabrication Methodologies 9.2.1. Importance of Structure-Property Synergism of ZnO QDs 9.2.1.1. Optical characteristics 9.2.1.2. Physiochemical properties and surface chemistry 9.2.1.3. Biological features 9.2.2. Synthesis Routes: Trade-Offs and Accomplishments 9.2.2.1. Wet-chemical approaches (hydrothermal, sol-gel, microwave-assisted synthesis, continuous flow synthesis) 9.2.2.2. Bio-synthesis: Green and sustainable synthetic scheme 9.3. Advancements of ZnO QDs in Biomedical Domains 9.3.1. Targeted Drug Delivery and Point-of-Care Diagnostics 9.3.2. Treatment of ROS-Mediated Disorders 9.3.3. Wound Healing and Engineered Tissue Regeneration 9.3.4. ZnO QDs with Anti-Microbial Potential 9.3.5. Sensing and Imaging Applications in Biology 9.3.6. Cancer Theranostics 9.4. Future Prospects and Challenges References 10. Relevant Properties of Metallic and Non-Metallic Nanomaterials in Biomedical Applications 10.1. Introduction 10.2. Structural Engineering of Nanoparticles 10.2.1. Size of Nanoparticles 10.2.2. Shape of Nanoparticles 10.2.3. Surface of Nanoparticles 10.2.4. Structural Tuning for Biomedical Applications 10.2.4.1. Magnetic resonance imaging (MRI) 10.2.4.2. Surface-enhanced raman spectroscopy (SERS) 10.3. Ceramic Biomaterials 10.3.1. Hydroxyapatites as Biomaterials 10.3.2. The Surface Features of Hydroxyapatites 10.3.3. The Effect of the Surface Structure of Hydroxyapatites on the Adsorbed Proteins Structure 10.3.4. Luminescent Lanthanide Hydroxyapatite-Based Nanomaterials 10.3.5. Silica-Based Nanomaterials 10.3.6. Silica Surface Structure 10.3.7. Silica in the Drug Delivery Field 10.4. Overview References 11. Exosomes and Their Theragnostic Applications in Healthcare 11.1. Introduction 11.2. Sources for Exosome Isolation 11.3. Mechanism of Exosome Biogenesis 11.4. Structure, Composition, and Function of Exosomes 11.5. Exosomes for Theragnostic Applications 11.5.1. Native Exosomes for Theragnostic Applications 11.5.2. Engineered Exosomes for Theragnostic Applications 11.6. Absorption and Distribution of Exosome-Based Theragnostic System 11.7. Challenges Related to Exosomes for Theragnostic Application 11.8. Conclusion and Future Prospective References 12. Nanogels for Theranostic Applications in Healthcare 12.1. Introduction 12.2. Applications of Nanogels 12.2.1. Nanogels for Targeted Drug Delivery 12.2.1.1. Active targeting 12.2.1.2. Passive targeting 12.2.2. Nanogels for Stimuli-Responsive Drug Delivery 12.2.2.1. Temperature-responsive nanogels 12.2.2.2. pH-responsive nanogels 12.2.2.3. Light-responsive nanogels 12.2.2.4. Magnetic-responsive nanogels 12.2.3. Nanogels for Poorly Water-Soluble Drugs 12.2.4. Nanogel for Gene Delivery 12.2.5. Nanogels for Brain Drug Delivery 12.2.6. Nanogels in Diagnosis and Imaging 12.3. Challenges and Future Perspective 12.4. Summary and Conclusion References 13. Theranostic Application of Nanofibers in Tissue Engineering 13.1. Introduction 13.2. Nanofiber-Based Scaffold for Drug Delivery 13.3. Nanofiber-Based Stem Cell Therapy and Labeling 13.4. Nanofiber-Based Scaffold Construction and Modification 13.5. Multifunctional and Smart Nanofiber-Based Scaffolds 13.6. Conclusion and Future Prospects References 14. Role of Nanomaterials in Biosensing Applications 14.1. Introduction 14.2. Biosensors: An Overview 14.3. Nanomaterials - Characteristic Features for Biosensing Applications 14.4. Nanomaterials-Based Biosensing for In-Vitro Diagnostics 14.4.1. Metal Nanoparticles 14.4.2. Metal Oxide-Based Nanomaterials 14.4.3. Carbon-Based Nanomaterials 14.4.4. Nanocomposites 14.5. Challenges and Future Prospects 14.6. Conclusion References 15. Application of Two-Dimensional Materials for Cancer Theranostic 15.1. Introduction 15.2. Properties of 2D Nanomaterials 15.3. Synthesis of 2D Nanomaterials 15.4. Application of 2D Nanomaterials in Cancer Therapy 15.4.1. Graphene and Its Derivative 15.4.2. Two-Dimensional Transition Metal Dichalcogenides (TMDCs) 15.4.2.1. Molybdenum disulfide (MoS2) 15.4.2.2. Tungsten disulfide (WS2) 15.4.2.3. MXenes 15.4.2.4. Xenes 15.4.3. Black Phosphorus (BP) 15.4.4. Boron Nitride (BN) 15.4.5. Metal Oxide Nanosheets 15.4.5.1. Manganese dioxide (MnO2) 15.4.5.2. Molybdenum oxide (MoOx) 15.4.5.3. Zinc oxide (ZnO) 15.4.5.4. Iron oxide (IO) 15.4.6. Layered Hydroxides (LDH) 15.4.7. Metal Organic Framework (MOF) 15.5. Conclusion References 16. Solid Lipid Nanoparticles: Towards Emerging Cancer Nanomedicine 16.1. Introduction 16.2. Characteristics 16.3. Methods of Preparation of Solid Lipid Nanoparticles for Cancer Nanomedicine 16.3.1. High Shear Homogenization 16.3.1.1. Hot homogenization 16.3.1.2. Cold homogenization 16.3.2. Solvent Emulsification Technique 16.3.3. Ultrasonication or High-Speed Homogenization 16.3.4. Double Emulsion Method 16.3.5. Spray Drying Method 16.3.6. Supercritical Fluid 16.3.7. Microemulsion-Based SLNs' Preparation 16.4. Routes of SLNs' Delivery 16.4.1. Transdermal/Topical 16.4.2. Oral 16.4.3. Parenteral 16.4.4. Pulmonary 16.4.5. Brain 16.5. Toxicology and Clearance 16.6. Applications 16.6.1. Breast Cancer 16.6.2. Lung Cancer 16.2.3. Colon Cancer 16.7. Conclusion References 17. Gold Nanoparticles for Cancer Therapy and Diagnosis 17.1. Introduction 17.2. Synthesis of Gold Nanoparticles 17.3. Gold Nanoparticles for Cancer Therapeutic Application 17.3.1. Gold Nanoparticles for Drug Delivery and Nucleic Acid Delivery 17.3.2. Photodynamic Therapy 17.3.3. Photothermal Therapy 17.3.4. Gold Nanoparticle-Based Combined Cancer Therapy 17.4. Application of Gold Nanoparticles in Cancer Diagnosis 17.4.1. Bio-Imaging 17.4.1.1. Computed tomography (CT) 17.4.1.2. Magnetic resonance imaging (MRI) 17.4.1.3. Nuclear imaging 17.4.1.4. Fluorescence imaging (FI) 17.4.1.5. Photoacoustic imaging (PA) 17.4.2. Biosensing 17.5. Gold Nanoparticles as Theragnostic Agents 17.6. Clinical Status of Gold Nanoparticle Formulations 17.7. Safety Concerns and Challenges for Application of Gold Nanoparticle in Healthcare 17.8. Conclusion References 18. Peptide-Based Nanoparticles for Theragnostic Application in Cancer Treatment 18.1. Introduction 18.1.1. Self-assembly of Peptide 18.1.2. Targeting Peptides 18.2. Peptide-Based NPs in Cancer Therapeutics 18.2.1. Peptide-Based NPs for Gene Delivery/Cytotoxic Drug 18.2.2. Peptidomimetics with Chemotherapy 18.2.2.1. Peptide hormones-based drug conjugates 18.2.2.2. Peptide-based NPs vaccines for immunotherapy 18.3. Peptide-Based NPs in Cancer Theragnostics 18.3.1. Targeting Peptides 18.3.2. Environment Responsive Peptides 18.3.3. Cell-Penetrating Peptides (CPPs) 18.3.4. Peptide Receptor Radionuclide Therapy (PPRT) 18.4. Peptide-Based Nanoparticles 18.5. Cell-penetrating Particles 18.6. CPPs: Protein Delivery in Cancer 18.7. Conclusion and Future Prospects References 19. Biomimetic Nanovesicles for Targeted Imaging and Therapeutic of Solid Tumor: Safe Nanomedicines 19.1. Cell-Inspired Systems 19.1.1. Exosomes 19.1.2. Cell-Derived Nanovesicles 19.2. Lipid-Based Systems 19.2.1. Solid Lipid Nanoparticles (SLNs) 19.2.2. Coordination Micelles 19.2.3. Filomicelles 19.3. Bacteria-Inspired Systems 19.3.1. Cellular Ghost 19.3.2. Microbots 19.3.3. Recombinant Bacteria 19.4. Hydrogel-Based Systems 19.4.1. Alginate-Based Hydrogel 19.4.2. Interpenetrating and Semi-Interpenetrating Polymer Network (IPN) Hydrogels 19.4.3. Imprinted Hydroxyethyl Methacrylate (HEMA) Hydrogels 19.5. Virus-Inspired Systems 19.5.1. Viral Gene Vectors 19.5.2. Virus-Like Particles 19.5.3. Virosomes 19.6. Mammalian Cell-Based Systems 19.6.1. RBC 19.6.2. Stem Cells 19.6.3. Platelets 19.6.4. Macrophages 19.6.5. Lymphocytes 19.7. Application in Cancer Therapy 19.8. Biological Effects and Toxicity of Biomimetic Nanovesicles 19.9. Conclusions 19.10. Limitations and Future Research References Index