ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Nanomaterials in Healthcare

دانلود کتاب نانومواد در بهداشت و درمان

Nanomaterials in Healthcare

مشخصات کتاب

Nanomaterials in Healthcare

ویرایش:  
نویسندگان: , ,   
سری:  
ISBN (شابک) : 9781032344751, 9781003322368 
ناشر: CRC Press 
سال نشر: 2024 
تعداد صفحات: [375] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 25 Mb 

قیمت کتاب (تومان) : 28,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 1


در صورت تبدیل فایل کتاب Nanomaterials in Healthcare به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب نانومواد در بهداشت و درمان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Dedication
Contents
Preface
Acknowledgments
List of Reviewers
Editors
Contributors
1. Introduction to Nanomaterials and Their Scope in Drug Delivery
	1.1. Introduction
	1.2. Types of Nanoparticles
		1.2.1. Metallic Nanoparticles
		1.2.2. Lipid-Based Nanoparticles
		1.2.3. Carbon-Based Nanoparticles
		1.2.4. Polymer-Based Nanoparticles
		1.2.5. Silica-Based Nanoparticles
	1.3. Application of Nanoparticles
		1.3.1. Antibacterial
		1.3.2. Cancer
		1.3.3. Neurodegenerative
		1.3.4. Infectious Disease
		1.3.5. Immunotherapy
	1.4. Nanoparticles Toxicity
		1.4.1. Metallic-Based Nanoparticles
		1.4.2. Lipid-Based Nanoparticles
		1.4.3. Silica-Based Nanoparticles
		1.4.4. Carbon-Based Nanoparticles
		1.4.5. Polymer-Based Nanoparticles
	1.5. Prospects and Challenges
	References
2. Application of Nanomaterials in Medicine: A Clinical Perspective
	2.1. Introduction
		2.1.1. History of Nanomedicine
		2.1.2. Advantages of Nanomaterials in Clinical Medicine
		2.1.3. Disadvantages of Nanomaterials in Clinical Medicine
		2.1.4. Latest Trends in Nanomedicine
	2.2. Nanomaterials Used in Communicable Diseases
		2.2.1. Tuberculosis
		2.2.2. HIV/AIDS
		2.2.3. Influenza
	2.3. Nanomaterials Used in Non-Communicable Diseases
		2.3.1. Cardiovascular Diseases
		2.3.2. Diabetes
		2.3.3. Neurodegenerative Diseases
		2.3.4. Autoimmune Disorders
	2.4. Nanomaterials Used in Cancer
	2.5. Nanomaterials for Imaging, Screening, and Diagnosis
	2.6. Tackling COVID-19 Using Nanotechnology
	2.7. Nanomedicine and Associative Technologies
		2.7.1. Additive Manufacturing
		2.7.2. Artificial Intelligence, Machine Learning, and Bioinformatics
		2.7.3. Robotics, Automation, and IoT
	2.8. Ethical Concerns about Nanomedicines
	2.9. Clinical Trials and Approvals of Nanomedicine
	2.10. Conclusion
	References
3. Advancement of Polymer-Based Nanocarrier System in Drug Delivery
	3.1. Introduction
	3.2. Types of Polymer-Based Nanocarriers
		3.2.1. Classification of Polymer Nanocarriers Based on Affinity to Water
			3.2.1.1. Hydrophilic
			3.2.1.2. Hydrophobic
			3.2.1.3. Amphiphilic
		3.2.2. Classification of Polymer Nanocarriers Based on Source
			3.2.2.1. Natural
			3.2.2.2. Synthetic
		3.2.3. Classification of Polymer Nanocarriers Based on Charge
			3.2.3.1. Cationic
			3.2.3.2. Anionic
			3.2.3.3. Charge reversible polymers
	3.3. Application of Polymeric Nanoparticles in Drug Delivery
		3.3.1. Oral Drug Delivery
		3.3.2. Vaginal Drug Delivery
		3.3.3. For Cancer Therapy
		3.3.4. Ocular Delivery
	3.4. Conclusion and Future Prospect
	References
4. Liposomes and Lipid Structures: Classification, Characterization, and Nanotechnology-Based Clinical Applications
	4.1. Introduction
	4.2. Need for Liposomes
	4.3. Evolution through Advancements
		4.3.1. Solid Lipid Nanoparticles (SLNs)
		4.3.2. Nano Lipid Carriers (NLCs)
	4.4. Conventional Methods for Liposome Preparation
		4.4.1. Film-Hydration Method
		4.4.2. Double-Emulsification Method
		4.4.3. Reverse Phase Evaporation Method
		4.4.4. Solvent Injection Method
		4.4.5. Detergent Dialysis Method
	4.5. Novel Methods for Liposome Preparation
		4.5.1. Supercritical Fluid (SCF) Technology
		4.5.2. Dual Asymmetric Centrifugation Techniques (DAC)
		4.5.3. Membrane Contactor Technology
		4.5.4. Microfluidic Technique
	4.6. Characterization of Liposomes
		4.6.1. Morphological Characterization
		4.6.2. Stability Study
		4.6.3. Encapsulation Efficiency
		4.6.4. In Vitro Drug Release
		4.6.5. Freeze-Drying
		4.6.6. Miscellaneous Methods
	4.7. Liposomes for Treatment of Various Diseases
		4.7.1. Cancer
		4.7.2. Reproductive Organs
		4.7.3. Developmental Disorders
		4.7.4. Arthritis and Bone Abnormalities
		4.7.5. Wound Healing
		4.7.6. Antimicrobial Diseases
		4.7.7. Nervous System Disorders
	4.8. Clinical Applications of Liposomes Concerning Nanotechnology
	4.9. Future Prospective
	4.10. Conclusion
	References
5. Functionalized Carbon-Based Nanoparticles for Biomedical Application
	5.1. Introduction
	5.2. Types and Properties of Carbon-Based Nanomaterials
		5.2.1. Fullerenes
			5.2.1.1. Structural dimension
			5.2.1.2. Physical property
			5.2.1.3. Mechanical property
			5.2.1.4. Electrical property
			5.2.1.5. Thermal property
			5.2.1.6. Optical property
			5.2.1.7. Chemical property
		5.2.2. Carbon Nanotubes
			5.2.2.1. Structural dimension
			5.2.2.2. Physical property
			5.2.2.3. Mechanical property
			5.2.2.4. Electrical property
			5.2.2.5. Thermal property
			5.2.2.6. Optical property
			5.2.2.7. Chemical property
		5.2.3. Graphene and Its Derivatives
			5.2.3.1. Structural dimension
			5.2.3.2. Physical property
			5.2.3.3. Mechanical property
			5.2.3.4. Electrical property
			5.2.3.5. Thermal property
			5.2.3.6. Optical property
			5.2.3.7. Chemical property
		5.2.4. Nanodiamond
			5.2.4.1. Structural dimension
			5.2.4.2. Physical property
			5.2.4.3. Mechanical property
			5.2.4.4. Electrical property
			5.2.4.5. Thermal property
			5.2.4.6. Optical property
			5.2.4.7. Chemical property
		5.2.5. Carbon Dots
			5.2.5.1. Structural dimension
			5.2.5.2. Physical property
			5.2.5.3. Mechanical property
			5.2.5.4. Electrical property
			5.2.5.5. Thermal property
			5.2.5.6. Optical property
			5.2.5.7. Chemical property
	5.3. Synthesis of Functionalized Carbon-Based Nanoparticles
		5.3.1. Synthesis
		5.3.2. Exohedral Functionalization
			5.3.2.1. Covalent functionalization
			5.3.2.2. Non-covalent functionalization
		5.3.3. Endohedral Functionalization
	5.4. Risk-Assessment of Functionalized Carbon-Based Nanoparticles
	5.5. Application of Functionalized CBNs
		5.5.1. Biosensors
		5.5.2. Drug Delivery
		5.5.3. Therapy
			5.5.3.1. Role in tissue engineering and regenerative medicine
			5.5.3.2. Role as free radical scavengers
			5.5.3.3. Role as an antimicrobial
			5.5.3.4. Role in cancer therapy
	5.6. Future Prospects and Challenges
	References
6. Engineered Magnetic Nanoparticles: Challenges and Prospects
	6.1. Introduction
	6.2. Synthesis of Magnetic Nanoparticles (MNPs)
		6.2.1. Physical Method
		6.2.2. Chemical Method
		6.2.3. Biological Synthesis Method
	6.3. Properties and Application
		6.3.1. Characteristics of Magnetic Particles
			6.3.1.1. Particle size
			6.3.1.2. Particle density
			6.3.1.3. Particle shape
			6.3.1.4. Magnetic property
		6.3.2. Application of Magnetic Nanoparticles
			6.3.2.1. Hyperthermia
			6.3.2.2. Photothermal therapy
			6.3.2.3. Drug delivery
			6.3.2.4. Infection treatments
			6.3.2.5. Magnetic resonance imaging
	6.4. Conclusion
	References
7. Nano Metal-Organic Frameworks as a Promising Candidate for Biomedical Applications
	7.1. Introduction
	7.2. Synthesis of NMOFs
		7.2.1. Solvothermal Synthesis
		7.2.2. Microemulsion Synthesis
		7.2.3. Microwave-Assisted Synthesis
		7.2.4. Ultrasound/Sonochemical Synthesis
		7.2.5. Electrochemical Synthesis
		7.2.6. Mechanochemical Synthesis
	7.3. Biofunctionalization of NMOFs
	7.4. NMOFs for Drug Delivery and Targeted Tumor Therapy
		7.4.1. pH-Responsive Drug Delivery
		7.4.2. Temperature-Responsive Drug Delivery
		7.4.3. Ion-Responsive Drug Delivery
		7.4.4. ATP-Responsive Drug Delivery
		7.4.5. Redox-Responsive Drug Delivery
	7.5. NMOFs for Bio-Imaging
	7.6. Conclusions and Outlook
	Acknowledgments
	References
8. Porous Silica Nanoparticles for Targeted Bio-Imaging and Drug Delivery Applications
	8.1. Introduction
	8.2. Strategies for Functionalization of Silica Hybrid Nanocarriers
	8.3. Drug Delivery Applications of Silica Nanohybrid
		8.3.1. Silica Polymer Nanohybrid for Drug Delivery
		8.3.2. Silica Nucleic Acid Nanohybrid for Drug Delivery
	8.4. Silica Protein Nanohybrid for Drug Delivery
	8.5. Silica Peptide Nanohybrid for Drug Delivery
	8.6. Silica Quantum Dot for Drug Delivery
	8.7. Silica Magnetic Nanohybrids for Drug Delivery
	8.8. Clinical Trials for Silica-Based Nanoformulations
	8.9. Conclusion
	References
9. Recent Advancement of Multifunctional ZnO Quantum Dots in the Biomedicine Field
	9.1. Introduction
	9.2. Structure, Properties, and Fabrication Methodologies
		9.2.1. Importance of Structure-Property Synergism of ZnO QDs
			9.2.1.1. Optical characteristics
			9.2.1.2. Physiochemical properties and surface chemistry
			9.2.1.3. Biological features
		9.2.2. Synthesis Routes: Trade-Offs and Accomplishments
			9.2.2.1. Wet-chemical approaches (hydrothermal, sol-gel, microwave-assisted synthesis, continuous flow synthesis)
			9.2.2.2. Bio-synthesis: Green and sustainable synthetic scheme
	9.3. Advancements of ZnO QDs in Biomedical Domains
		9.3.1. Targeted Drug Delivery and Point-of-Care Diagnostics
		9.3.2. Treatment of ROS-Mediated Disorders
		9.3.3. Wound Healing and Engineered Tissue Regeneration
		9.3.4. ZnO QDs with Anti-Microbial Potential
		9.3.5. Sensing and Imaging Applications in Biology
		9.3.6. Cancer Theranostics
	9.4. Future Prospects and Challenges
	References
10. Relevant Properties of Metallic and Non-Metallic Nanomaterials in Biomedical Applications
	10.1. Introduction
	10.2. Structural Engineering of Nanoparticles
		10.2.1. Size of Nanoparticles
		10.2.2. Shape of Nanoparticles
		10.2.3. Surface of Nanoparticles
		10.2.4. Structural Tuning for Biomedical Applications
			10.2.4.1. Magnetic resonance imaging (MRI)
			10.2.4.2. Surface-enhanced raman spectroscopy (SERS)
	10.3. Ceramic Biomaterials
		10.3.1. Hydroxyapatites as Biomaterials
		10.3.2. The Surface Features of Hydroxyapatites
		10.3.3. The Effect of the Surface Structure of Hydroxyapatites on the Adsorbed Proteins Structure
		10.3.4. Luminescent Lanthanide Hydroxyapatite-Based Nanomaterials
		10.3.5. Silica-Based Nanomaterials
		10.3.6. Silica Surface Structure
		10.3.7. Silica in the Drug Delivery Field
	10.4. Overview
	References
11. Exosomes and Their Theragnostic Applications in Healthcare
	11.1. Introduction
	11.2. Sources for Exosome Isolation
	11.3. Mechanism of Exosome Biogenesis
	11.4. Structure, Composition, and Function of Exosomes
	11.5. Exosomes for Theragnostic Applications
		11.5.1. Native Exosomes for Theragnostic Applications
		11.5.2. Engineered Exosomes for Theragnostic Applications
	11.6. Absorption and Distribution of Exosome-Based Theragnostic System
	11.7. Challenges Related to Exosomes for Theragnostic Application
	11.8. Conclusion and Future Prospective
	References
12. Nanogels for Theranostic Applications in Healthcare
	12.1. Introduction
	12.2. Applications of Nanogels
		12.2.1. Nanogels for Targeted Drug Delivery
			12.2.1.1. Active targeting
			12.2.1.2. Passive targeting
		12.2.2. Nanogels for Stimuli-Responsive Drug Delivery
			12.2.2.1. Temperature-responsive nanogels
			12.2.2.2. pH-responsive nanogels
			12.2.2.3. Light-responsive nanogels
			12.2.2.4. Magnetic-responsive nanogels
		12.2.3. Nanogels for Poorly Water-Soluble Drugs
		12.2.4. Nanogel for Gene Delivery
		12.2.5. Nanogels for Brain Drug Delivery
		12.2.6. Nanogels in Diagnosis and Imaging
	12.3. Challenges and Future Perspective
	12.4. Summary and Conclusion
	References
13. Theranostic Application of Nanofibers in Tissue Engineering
	13.1. Introduction
	13.2. Nanofiber-Based Scaffold for Drug Delivery
	13.3. Nanofiber-Based Stem Cell Therapy and Labeling
	13.4. Nanofiber-Based Scaffold Construction and Modification
	13.5. Multifunctional and Smart Nanofiber-Based Scaffolds
	13.6. Conclusion and Future Prospects
	References
14. Role of Nanomaterials in Biosensing Applications
	14.1. Introduction
	14.2. Biosensors: An Overview
	14.3. Nanomaterials - Characteristic Features for Biosensing Applications
	14.4. Nanomaterials-Based Biosensing for In-Vitro Diagnostics
		14.4.1. Metal Nanoparticles
		14.4.2. Metal Oxide-Based Nanomaterials
		14.4.3. Carbon-Based Nanomaterials
		14.4.4. Nanocomposites
	14.5. Challenges and Future Prospects
	14.6. Conclusion
	References
15. Application of Two-Dimensional Materials for Cancer Theranostic
	15.1. Introduction
	15.2. Properties of 2D Nanomaterials
	15.3. Synthesis of 2D Nanomaterials
	15.4. Application of 2D Nanomaterials in Cancer Therapy
		15.4.1. Graphene and Its Derivative
		15.4.2. Two-Dimensional Transition Metal Dichalcogenides (TMDCs)
			15.4.2.1. Molybdenum disulfide (MoS2)
			15.4.2.2. Tungsten disulfide (WS2)
			15.4.2.3. MXenes
			15.4.2.4. Xenes
		15.4.3. Black Phosphorus (BP)
		15.4.4. Boron Nitride (BN)
		15.4.5. Metal Oxide Nanosheets
			15.4.5.1. Manganese dioxide (MnO2)
			15.4.5.2. Molybdenum oxide (MoOx)
			15.4.5.3. Zinc oxide (ZnO)
			15.4.5.4. Iron oxide (IO)
		15.4.6. Layered Hydroxides (LDH)
		15.4.7. Metal Organic Framework (MOF)
	15.5. Conclusion
	References
16. Solid Lipid Nanoparticles: Towards Emerging Cancer Nanomedicine
	16.1. Introduction
	16.2. Characteristics
	16.3. Methods of Preparation of Solid Lipid Nanoparticles for Cancer Nanomedicine
		16.3.1. High Shear Homogenization
			16.3.1.1. Hot homogenization
			16.3.1.2. Cold homogenization
		16.3.2. Solvent Emulsification Technique
		16.3.3. Ultrasonication or High-Speed Homogenization
		16.3.4. Double Emulsion Method
		16.3.5. Spray Drying Method
		16.3.6. Supercritical Fluid
		16.3.7. Microemulsion-Based SLNs' Preparation
	16.4. Routes of SLNs' Delivery
		16.4.1. Transdermal/Topical
		16.4.2. Oral
		16.4.3. Parenteral
		16.4.4. Pulmonary
		16.4.5. Brain
	16.5. Toxicology and Clearance
	16.6. Applications
		16.6.1. Breast Cancer
		16.6.2. Lung Cancer
		16.2.3. Colon Cancer
	16.7. Conclusion
	References
17. Gold Nanoparticles for Cancer Therapy and Diagnosis
	17.1. Introduction
	17.2. Synthesis of Gold Nanoparticles
	17.3. Gold Nanoparticles for Cancer Therapeutic Application
		17.3.1. Gold Nanoparticles for Drug Delivery and Nucleic Acid Delivery
		17.3.2. Photodynamic Therapy
		17.3.3. Photothermal Therapy
		17.3.4. Gold Nanoparticle-Based Combined Cancer Therapy
	17.4. Application of Gold Nanoparticles in Cancer Diagnosis
		17.4.1. Bio-Imaging
			17.4.1.1. Computed tomography (CT)
			17.4.1.2. Magnetic resonance imaging (MRI)
			17.4.1.3. Nuclear imaging
			17.4.1.4. Fluorescence imaging (FI)
			17.4.1.5. Photoacoustic imaging (PA)
		17.4.2. Biosensing
	17.5. Gold Nanoparticles as Theragnostic Agents
	17.6. Clinical Status of Gold Nanoparticle Formulations
	17.7. Safety Concerns and Challenges for Application of Gold Nanoparticle in Healthcare
	17.8. Conclusion
	References
18. Peptide-Based Nanoparticles for Theragnostic Application in Cancer Treatment
	18.1. Introduction
		18.1.1. Self-assembly of Peptide
		18.1.2. Targeting Peptides
	18.2. Peptide-Based NPs in Cancer Therapeutics
		18.2.1. Peptide-Based NPs for Gene Delivery/Cytotoxic Drug
		18.2.2. Peptidomimetics with Chemotherapy
			18.2.2.1. Peptide hormones-based drug conjugates
			18.2.2.2. Peptide-based NPs vaccines for immunotherapy
	18.3. Peptide-Based NPs in Cancer Theragnostics
		18.3.1. Targeting Peptides
		18.3.2. Environment Responsive Peptides
		18.3.3. Cell-Penetrating Peptides (CPPs)
		18.3.4. Peptide Receptor Radionuclide Therapy (PPRT)
	18.4. Peptide-Based Nanoparticles
	18.5. Cell-penetrating Particles
	18.6. CPPs: Protein Delivery in Cancer
	18.7. Conclusion and Future Prospects
	References
19. Biomimetic Nanovesicles for Targeted Imaging and Therapeutic of Solid Tumor: Safe Nanomedicines
	19.1. Cell-Inspired Systems
		19.1.1. Exosomes
		19.1.2. Cell-Derived Nanovesicles
	19.2. Lipid-Based Systems
		19.2.1. Solid Lipid Nanoparticles (SLNs)
		19.2.2. Coordination Micelles
		19.2.3. Filomicelles
	19.3. Bacteria-Inspired Systems
		19.3.1. Cellular Ghost
		19.3.2. Microbots
		19.3.3. Recombinant Bacteria
	19.4. Hydrogel-Based Systems
		19.4.1. Alginate-Based Hydrogel
		19.4.2. Interpenetrating and Semi-Interpenetrating Polymer Network (IPN) Hydrogels
		19.4.3. Imprinted Hydroxyethyl Methacrylate (HEMA) Hydrogels
	19.5. Virus-Inspired Systems
		19.5.1. Viral Gene Vectors
		19.5.2. Virus-Like Particles
		19.5.3. Virosomes
	19.6. Mammalian Cell-Based Systems
		19.6.1. RBC
		19.6.2. Stem Cells
		19.6.3. Platelets
		19.6.4. Macrophages
		19.6.5. Lymphocytes
	19.7. Application in Cancer Therapy
	19.8. Biological Effects and Toxicity of Biomimetic Nanovesicles
	19.9. Conclusions
	19.10. Limitations and Future Research
	References
Index




نظرات کاربران