دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Sandeep S. Ahankari, Amar K. Mohanty, Manjusri Misra سری: Emerging Materials and Technologies ISBN (شابک) : 1032156724, 9781032156729 ناشر: CRC Press سال نشر: 2024 تعداد صفحات: 542 [543] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 32 Mb
در صورت تبدیل فایل کتاب Nanomaterials from Renewable Resources for Emerging Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نانومواد از منابع تجدیدپذیر برای کاربردهای نوظهور نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Series Page Title Page Copyright Page Contents Preface Editors Contributors 1. Introduction to Nanomaterials from Renewable Resources and Book Overview 1.1 Introduction to Nanotechnology - Classification, Extraction, and Applications 1.1.1 Classification of Nanofillers 1.1.2 Extraction of Nanofillers 1.1.2.1 Thermal Decomposition 1.1.2.2 Sputtering 1.1.2.3 Pyrolysis 1.1.2.4 Nanolithography 1.1.2.5 Spinning 1.1.2.6 Laser Ablation 1.1.2.7 Bio Synthesis 1.1.2.8 Chemical Vapour Deposition 1.1.2.9 Sol-Gel Process 1.2 Nano Fillers from Natural Biopolymers - Classification, Extraction, and Functionalization 1.2.1 Classification 1.2.1.1 Nano Polysaccharides 1.2.1.1.1 Extraction 1.2.1.1.2 Functionalization 1.2.1.2 Nanocellulose - Classification, Extraction, and Functionalization 1.2.1.3 Chitin and Chitosan - Introduction and Extraction 1.2.1.4 Nano Lignin 1.2.1.4.1 Classification 1.2.1.4.2 Extraction 1.2.1.4.3 Acid-Catalysed Condensation 1.2.1.4.4 Self-Assembly Method 1.3 Overview of the Applications of Green Nanomaterials 1.3.1 Green Packaging 1.3.1.1 Materials Used in Green Packaging 1.3.2 Biomedical Applications 1.3.3 Water Purification 1.4 Summary Acknowledgements References 2. Processing and Characterization of Nanocomposites Containing Green Nanofillers 2.1 Introduction 2.2 Processing Methods of Composites Involving Green Nanofillers 2.2.1 Intercalation and Exfoliation 2.2.2 In-Situ Polymerization 2.2.3 Melt Processing 2.2.4 Solvent Casting 2.2.5 Electrospinning 2.2.6 Deposition/Layer Assembly 2.2.7 Sol-Gel Process 2.3 Characterization of Nanocomposites Involving Green Nanofillers 2.3.1 Spectroscopy Techniques 2.3.1.1 X-Ray Diffraction (XRD) 2.3.1.2 Fourier Transform Infrared Spectroscopy (FTIR) 2.3.1.3 Raman Spectroscopy 2.3.1.4 Atomic Force Microscopy 2.3.1.5 Nuclear Magnetic Resonance Spectroscopy 2.3.2 Thermal Analysis Techniques 2.3.2.1 Thermogravimetric Analysis (TGA) 2.3.2.2 Differential Scanning Calorimetry (DSC) 2.3.2.3 Thermomechanical Analysis (TMA) 2.3.2.4 Dynamic Mechanical Analysis (DMA) 2.3.2.5 Differential Thermal Analysis (DTA) 2.3.3 Microscopy Techniques 2.3.3.1 Scanning Electron Microscopy (SEM) 2.3.3.2 Transmission Electron Microscopy (TEM) 2.4 Summary Acknowledgements References Section I: Food Packaging 3. Developments in Chitosan-Based Nanocomposites for Food Packaging Applications 3.1 Introduction 3.2 Source and Production of Chitosan 3.3 Functionalization of Chitosan 3.4 Chitosan-Based Composites Processing Techniques 3.4.1 Solution Casting 3.4.2 Coating 3.4.3 Layer-by-Layer Assembly 3.4.4 Extrusion 3.5 Antibacterial Nanocomposites 3.5.1 Chitosan-Natural Polymer Composites 3.5.2 Chitosan-Essential Oil Composites 3.5.3 Chitosan-Metal Nanoparticle Composite 3.5.4 Chitosan-Metal Oxide Nanoparticle Composites 3.5.5 Chitosan-Synthetic Polymer Composites 3.6 Barrier Nanocomposites 3.6.1 Nanocellulose-Chitosan Composite 3.6.2 Nanoclay-Chitosan Composites 3.6.3 Metal Oxide Nanoparticles-Chitosan Composites 3.7 Summary and Perspective References 4. Recent Advancements in Barrier Properties of Lignin Nanomaterial-Based Composites 4.1 Introduction 4.2 Lignin in the Food Packaging Industry 4.2.1 The Structure of Native Lignin 4.3 Lignin Nanoparticles (LNPS) in the Food-Packaging Industry 4.3.1 Main Types of Lignin Nanoparticles (LNPS) 4.3.2 Different Techniques Used in the Production of LNPS 4.3.3 Mechanical Properties of LNPS 4.3.3.1 The Mechanism of LNPS as an Antimicrobial Agent 4.4 The Modification of Food Packaging Plastic Materials Using Lignin Nanoparticles (LNPS) 4.4.1 Polyvinyl Alcohol (PVA) 4.4.2 Polylactic Acid (PLA) 4.4.3 Macroalgae 4.4.4 Silver Nanaoparticles (AgNPs) 4.5 Conclusions References 5. Modified Hydrophobic Starch - An Alternate Green Nanomaterial for Packaging Industry 5.1 Introduction 5.1.1 Classification of BioPlastics (Based on Starch) 5.1.2 Plastic and Environment 5.1.3 Starch as a Sustainable Polymer 5.1.4 Starch Properties 5.1.5 The Green Context 5.1.6 Green Chemical Treatments of the Starch-Based Films 5.1.7 Hydrophobic Starch-Based Composite and Nanocomposite 5.2 Film-Forming Methods 5.2.1 Solution Casting (Wet Process) 5.2.2 Melt Processing (Dry Process) 5.2.3 Nanotechnology in Starch Food Packaging 5.3 Role of Hydrophobic Starch Packaging and Containers 5.3.1 Consumer and Industrial Products 5.3.2 Increasing Shelf Life of Goods 5.3.3 Challenges 5.4 Applications of Green Packaging Nanomaterial 5.5 Conclusions and Future Perspectives References 6. Renewable Nanocomposites for Antibacterial Active Food Packaging 6.1 Introduction 6.2 Antimicrobial Agents in Active Food Packaging 6.2.1 Moisture Scavengers 6.2.2 Ethylene Absorbers 6.2.3 Oxygen Scavengers 6.2.4 Essential Oils (EOs) 6.2.5 Enzymes 6.2.6 Bacteriocins 6.2.7 Antimicrobial Polymers 6.3 Classification of Antimicrobial Films and Coatings According to Their Composition 6.3.1 Polysaccharide-Based Films and Coatings 6.3.1.1 Starch 6.3.1.2 Cellulose 6.3.1.3 Chitin/Chitosan 6.3.1.4 Alginates 6.3.1.5 Carrageenan 6.3.2 Protein-Based Films and Coatings 6.3.2.1 Milk Proteins 6.3.2.2 Soy Proteins Isolates (SPI) 6.3.2.3 Wheat Protein 6.3.2.4 Collagen/Gelatin 6.3.3 Lipid-Based Films and Coatings 6.3.3.1 Waxes 6.3.3.2 Glycerides 6.4 Renewable Nanocomposites in Food Encapsulation 6.4.1 Comparison between Microencapsulation and Nanoencapsulation 6.4.2 Mechanisms of Release in Food Encapsulation 6.4.2.1 Diffusion 6.4.2.2 Osmosis 6.4.2.3 Erosion 6.4.2.4 Release by Swelling 6.4.2.5 Release by Fragmentation 6.4.2.6 Degradation 6.4.2.7 Dissolution Mechanism 6.5 Antimicrobial Bio-Nanocomposites for Food Packaging 6.5.1 Classification of Biopolymers According to the Source of Production 6.5.1.1 Biopolymers Extracted from Biomass 6.5.1.2 Biopolymers Synthesized from Biomass Derived Monomers 6.5.1.3 Biopolymers from Microorganisms 6.6 Biotechnology in Biopolymers Developments 6.6.1 Biotechnological Manufacturing of Adipic Acid from Lignin 6.6.2 Bacterial Cellulose (BC) 6.6.3 Production of Protein-Based Polymers 6.7 Antimicrobial Activity of Different Fillers in Bio-Nanocomposites 6.7.1 Metallic-Based Antimicrobial Bio-Nanocomposites 6.7.2 Montmorillonite-Based Antimicrobial Bio-Nanocomposites 6.7.3 Layered Double Hydroxide (LDH)-Based Antimicrobial Bio-Nanocomposites 6.8 Safety of Different Antimicrobial Bio-Nanocomposites in Active Food Packaging Applications 6.8.1 Regulation of Migration Test 6.8.2 Experimental Approach for Migration Test 6.9 Antimicrobial Renewable Nanocomposites in Active Food Packaging Marketing 6.10 Conclusion and Future Perspectives References Section II: Energy Conservation/Conversion 7. Applications of Lignin in Energy Conversion: Solar Cells, Fuel Cells and Photocatalysis 7.1 Introduction 7.2 Applications of Lignin in Photovoltaic Devices 7.2.1 Lignin in Polymer Solar Cells 7.2.2 Lignin in Dye Sensitized Solar Cells 7.2.3 Lignin in Perovskite Solar Cells 7.3 Applications of Lignin in Fuel Cells 7.3.1 Lignin as Fuel or Mediator in FC 7.3.2 Lignin as Membranes in FC 7.3.3 Lignin as Electrode Materials in FC 7.4 Applications of Lignin in Photocatalysis 7.4.1 Photocatalytic Degradation of Organic Dyes 7.4.2 Photocatalytic Degradation of Organic Drugs 7.4.3 Photocatalytic Degradation of SO2 and CO2 Gas 7.5 Conclusion and Perspectives References 8. Nanocellulose-Based Materials as Electrodes in Supercapacitors 8.1 Introduction 8.2 Preparation of NC-Based Conductive Materials for Energy-Storage Devices 8.3 NC-Based Materials for Electrodes in Supercapacitor 8.3.1 NC-CPs Based Materials 8.3.1.1 Films 8.3.1.2 Aerogels 8.3.2 NC-Carbon-Based Materials 8.3.2.1 Films 8.3.2.2 Aerogels 8.3.3 NC/CP/Graphene/Metallic Particles-Based Composite Materials 8.4 Summary and Outlook Acknowledgement References 9. Employment of Green Polysaccharide Nanoparticles in Electrolyte Membranes 9.1 Introduction 9.2 Classification of Polymer Electrolytes PEs 9.2.1 Dry-Solid Polymer Electrolytes (DSPEs) 9.2.2 Plasticized Polymer Electrolytes (PPEs) 9.2.3 Gel-Polymer Electrolytes (GPEs) 9.2.4 Composite-Polymer Electrolytes (CPEs) 9.3 Criteria of Membrane Selection 9.4 Chemical Modification of Polysaccharides 9.4.1 Examples of Chemically Modified and Combined Polysaccharides 9.4.1.1 Cellulose-Based PEM 9.4.1.2 Chitosan-Based PEM 9.4.1.3 Pectin-Based PEM 9.4.1.4 Carrageenan-Based PEM 9.4.1.5 Alginate-Based PEM 9.5 Sources of Polysaccharides Utilized as an Electrolyte Membrane 9.5.1 Algal Polysaccharides 9.5.2 Plant Polysaccharides 9.5.3 Bacterial Polysaccharides 9.6 A Variety of Applications Dealing with the Polysaccharide Electrolyte Membrane 9.6.1 Fuel Cells 9.6.2 Batteries 9.6.3 Dye-Sensitized Solar Cells 9.6.4 Supercapacitor 9.7 Challenges and Opportunities in Using Polysaccharides as Electrolyte Membranes 9.8 Conclusion Acknowledgements References 10. Nanocellulose-Based Separators for Energy Storage Devices 10.1 Introduction 10.2 NC-Based Separators for Batteries 10.2.1 Lithium-Ion Batteries 10.2.2 Lithium-Sulfur Batteries 10.2.3 Lithium-Metal Batteries 10.3 NC-Based Separators for Supercapacitors 10.4 Summary and Outlook Acknowledgement References 11. Employment of Nanolignin in Energy-Storage Devices 11.1 Energy Storage Technology 11.1.1 Related Work/Background 11.1.2 Lithium-Ion Batteries (LIBs) 11.1.3 LIBs Anode Materials 11.1.4 LIBs Cathode Materials 11.2 Organic Electrodes for Batteries 11.2.1 Introduction and Principle 11.2.2 Quinones 11.2.3 Relation between Organic Electrodes Used in Lithium-Ion Batteries and Quinones 11.2.4 Introduction to the Nanolignin 11.2.5 Origin and Nature of Nanolignin 11.2.5.1 Origin of Nanolignin 11.2.5.2 Nature of Nanolignin 11.2.6 Chemical Structures of Nanolignin 11.2.7 Nanolignin-Based Smart Materials 11.2.8 Isolation's Techniques 11.2.8.1 Kraft Process 11.2.8.2 Sulfite process 11.3 Kraft Nanolignin-Carbon Composite for Sustainable Cathode Materials 11.3.1 Objective and Motivation 11.3.2 Electrochemistry of Kraft Nanolignin-Carbon Composites 11.4 Modification of Kraft Nanolignin with Dialdehyde Crosslinkers for Cathode Materials 11.5 Oxidation of Kraft Nanolignin for Cathode Materials 11.6 Other Advanced Carbon Materials from Nanolignin for Electrodes 11.6.1 Carbon Fibres 11.6.1.1 Spinning 11.6.1.2 Thermostabilization 11.6.1.3 Carbonization 11.6.1.4 Developments in Nanolignin-Derived Carbon Fibres 11.6.1.5 Microstructured Carbon Fibre Mats 11.6.1.6 Activated Carbons 11.6.1.7 Templated Carbons 11.6.1.8 Activated Carbon Fibres 11.6.1.9 Nanolignin Film 11.7 Composites from Nanolignin for Electrodes 11.7.1 Carbon/Nanolignin Composites 11.7.2 Nanolignin-Derived Carbon/Active Material Composites 11.7.3 Nanolignin/Active Materials and Nanolignin/Polymer Composites 11.8 Nanolignin-Based Materials without Carbonization as Binders and Separators 11.8.1 Nanolignin-Based Binder without Carbonization 11.8.2 Nanolignin-Based Separator without Carbonization 11.9 Conclusions How the Contribution Fits into the Book References 12. Nanocellulose-Based Facilitated Transport Membranes for Biogas Upgradation 12.1 Introduction 12.2 Nanocellulose-Extraction Methods, Types, Functionalization, and Applications 12.3 Membrane Technology - Terms in Gas Separation 12.3.1 Robeson's Upper Bound 12.4 Facilitated Transport Mechanism (FTM): Concept, Types, and Applicability of NC in Utilizing the Mechanism for Biogas Upgradation 12.4.1 Carriers: Working Principle 12.4.1.1 Mobile Carrier Membranes 12.4.1.2 Supported Liquid Membrane (SLM) 12.4.1.3 Ion-Exchange Membranes (IEM) 12.4.1.4 Fixed-Site Carrier Membranes (FSC) 12.4.2 Applicability of NC in Biogas Upgradation 12.5 Factors Affecting Permeability and Selectivity 12.5.1 External Factors 12.5.1.1 Effect of Relative Humidity 12.5.1.2 Effect of Feed Pressure 12.5.1.3 Effect of Temperature 12.5.1.4 Effect of pH 12.5.2 Effect of Internal Parameters 12.5.2.1 Effect of Thickness 12.5.2.2 Effect of Mechanical Properties of Membrane 12.5.2.3 Crystallinity 12.6 Summary Acknowledgement References 13. Aerogels with Green Nanofillers for Flame-Retardant Applications 13.1 Introduction 13.1.1 Classification of Aerogels 13.1.2 Characteristics of Aerogels 13.1.2.1 Porosity 13.1.2.2 Mechanical Strength 13.1.2.3 Thermal Conductivity 13.1.2.4 Flame Retardancy 13.2 Processing of Aerogels 13.2.1 Thermal Drying 13.2.2 Freeze Drying 13.2.3 Supercritical Drying (SCD) 13.2.4 Ambient Pressure Drying 13.2.5 Processing of NC Aerogels 13.3 Aerogel Functionalization 13.4 Flame Retardant Green Aerogels 13.5 Green Aerogels with Inorganic Nanofillers 13.5.1 NC/Inorganic NC-Based Aerogels 13.5.2 Chitin and Chitosan-Based Aerogels 13.5.3 Starch-Based Aerogels 13.5.4 Lignin-Based Aerogels 13.6 Conclusions and Outlook References Section III: Environment 14. Recent Trends in Nanochitosan-Based Materials for Environmental Remediation 14.1 Introduction 14.2 Nanochitosan 14.2.1 Ionotropic Gelation 14.2.2 Co-precipitation Method 14.3 Nanochitosan-Based Materials for Water Remediation 14.3.1 Heavy Metals 14.3.2 Organic Pollutants 14.3.3 Desalination 14.3.4 Antibacterial/Antifouling 14.3.5 Nanochitosan for Oil and Water Separation 14.4 Nanochitosan-Derived Materials for Soil Remediation 14.4.1 Inorganic (Heavy Metal) Contaminants 14.4.2 Organic Contaminants 14.4.3 Degradative Capacity of Contaminated Soils 14.4.4 Chitosan in Sensor Technology 14.5 Nanochitosan-Derived Materials for Air Remediation 14.5.1 Chitosan-Based Electrospun Nanofiber Filters 14.5.2 Chitosan-Based Hollow Fiber Membranes 14.5.3 Chitosan-Based Nanotubes for Air Filtration 14.6 Conclusion and Future Perspective References 15. Nanocellulose-Based Membranes for Water Purification 15.1 Introduction 15.2 Water Pollution 15.2.1 Direct Sources of Pollution 15.2.2 Indirect Sources of Pollution 15.3 Major Contaminants and Their Characteristics 15.3.1 Physical Contaminants 15.3.2 Chemical Contaminants 15.3.3 Biological Contaminants 15.4 Lignocellulosic Biomass 15.4.1 Cellulose 15.4.2 Hemicellulose 15.4.3 Lignin 15.5 Nanocellulose (NC): Introduction/Fundamentals and Extraction 15.5.1 Extraction 15.5.2 Pretreatment 15.5.3 Acid-Based Hydrolysis 15.5.4 Enzymatic Hydrolysis 15.5.5 Mechanical Fibrillation 15.6 NC Membranes 15.7 Preparation of NC Membrane 15.8 Characteristics of NC Membrane 15.8.1 Hydrophilicity 15.8.2 Porosity 15.8.3 High Surface Area 15.8.4 Modifiable Surface Characteristics 15.8.5 Electrostatic Interaction 15.8.6 Water Flux 15.8.7 Mechanical Strength 15.8.8 Reusability and Biodegradability 15.9 Water Filtration Mechanisms Using NC 15.9.1 Filtration by Size Exclusion 15.9.2 Filtration by Electrostatic Interaction 15.9.3 Filtration by the Hydrophilicity 15.10 Recent Developments in Water Filtration Using NC-Based Membranes 15.10.1 Removal of Heavy Metal Ions 15.10.2 Removal of Dyes 15.10.3 Removal of Microorganisms 15.10.4 Removal of Oil 15.11 Types of Membrane Separation Techniques Presently in Use 15.12 Conclusion 15.13 Future Scope References 16. Nanocellulose- and Modified Wood-Based Sorbents for Oily Waste Cleanup 16.1 Introduction 16.2 Key Evaluators for Oil Sorbents 16.2.1 Apparent Density 16.2.2 Mechanical Properties 16.2.3 Porosity and Sorption Capacity 16.2.4 Sorption Selectivity 16.3 Production Process of Nanocellulose- or Modified Wood-Based Sorbents 16.3.1 Nanocellulose-Based Aerogel/Foam Sorbents 16.3.1.1 Crosslinking 16.3.1.1.1 Physical Crosslinking 16.3.1.1.2 Chemical Crosslinking 16.3.1.2 Hydrophobization 16.3.1.2.1 Physical Blending 16.3.1.2.2 Chemical Modification 16.3.1.2.3 Thermal Treatment 16.3.2 Modified Wood-Based Sorbents 16.4 Summary and Outlook References 17. Carbon Nanomaterials as Renewable Water Purification Materials 17.1 Introduction 17.2 Carbon Nanotubes 17.2.1 Synthesis of Carbon Nanotubes from Renewable Sources 17.3 Activated Carbon 17.3.1 Synthesis of Activated Carbon 17.4 Carbon Dots 17.4.1 Synthesis of Carbon Dots 17.5 Graphene Oxide (GO) 17.5.1 Synthesis of Graphene Oxide 17.6 Fullerene 17.6.1 Synthesis of Fullerenes 17.7 MD Simulations for Water Treatment 17.8 Water Purification System with Renewable Source 17.9 Summary and Outlook References 18. Potential Applications of Polysaccharide-Based Aerogels 18.1 Introduction to Aerogels 18.2 Polysaccharide-Based Aerogels: Precursors and Methods of Preparation 18.2.1 Precursors 18.2.2 Methods of Preparation 18.3 Applications of Polysaccharide-Based Aerogels 18.3.1 Biomedical Applications 18.3.1.1 As Biosensors 18.3.1.2 Tissue Engineering and Bone Regeneration 18.3.1.3 Wound Healing 18.3.1.4 Drug Delivery 18.3.2 Food Technology 18.3.2.1 Food and Food Supplements 18.3.2.2 Food Packaging 18.3.3 Electronics Industry 18.3.3.1 Supercapacitors 18.3.3.2 For Batteries 18.3.3.3 For Piezoelectric Devices 18.3.3.4 In High Voltage Insulators 18.3.4 In Chemical Engineering 18.3.4.1 For Catalysis 18.3.4.2 In Filtration and Separation 18.3.4.3 In Green Technology 18.3.5 In Construction Applications 18.3.5.1 As Solar Energy Materials 18.3.5.2 In Acoustic Devices 18.3.5.3 As Thermal Insulators 18.3.5.4 As Lightweight Materials 18.4 Summary and Outlook References 19. Future Outlook and Challenges in the Applicability of Green Nanomaterials 19.1 Packaging 19.2 Energy Conversion/Conservation 19.3 Water Treatment/Purification Technology 19.4 Scope for Industrialization References Index