ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Nanomaterials from Renewable Resources for Emerging Applications

دانلود کتاب نانومواد از منابع تجدیدپذیر برای کاربردهای نوظهور

Nanomaterials from Renewable Resources for Emerging Applications

مشخصات کتاب

Nanomaterials from Renewable Resources for Emerging Applications

ویرایش:  
نویسندگان: , ,   
سری: Emerging Materials and Technologies 
ISBN (شابک) : 1032156724, 9781032156729 
ناشر: CRC Press 
سال نشر: 2024 
تعداد صفحات: 542
[543] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 32 Mb 

قیمت کتاب (تومان) : 47,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 1


در صورت تبدیل فایل کتاب Nanomaterials from Renewable Resources for Emerging Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب نانومواد از منابع تجدیدپذیر برای کاربردهای نوظهور نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Half Title
Series Page
Title Page
Copyright Page
Contents
Preface
Editors
Contributors
1. Introduction to Nanomaterials from Renewable Resources and Book Overview
	1.1 Introduction to Nanotechnology - Classification, Extraction, and Applications
		1.1.1 Classification of Nanofillers
		1.1.2 Extraction of Nanofillers
			1.1.2.1 Thermal Decomposition
			1.1.2.2 Sputtering
			1.1.2.3 Pyrolysis
			1.1.2.4 Nanolithography
			1.1.2.5 Spinning
			1.1.2.6 Laser Ablation
			1.1.2.7 Bio Synthesis
			1.1.2.8 Chemical Vapour Deposition
			1.1.2.9 Sol-Gel Process
	1.2 Nano Fillers from Natural Biopolymers - Classification, Extraction, and Functionalization
		1.2.1 Classification
			1.2.1.1 Nano Polysaccharides
				1.2.1.1.1 Extraction
				1.2.1.1.2 Functionalization
			1.2.1.2 Nanocellulose - Classification, Extraction, and Functionalization
			1.2.1.3 Chitin and Chitosan - Introduction and Extraction
			1.2.1.4 Nano Lignin
				1.2.1.4.1 Classification
				1.2.1.4.2 Extraction
				1.2.1.4.3 Acid-Catalysed Condensation
				1.2.1.4.4 Self-Assembly Method
	1.3 Overview of the Applications of Green Nanomaterials
		1.3.1 Green Packaging
			1.3.1.1 Materials Used in Green Packaging
		1.3.2 Biomedical Applications
		1.3.3 Water Purification
	1.4 Summary
	Acknowledgements
	References
2. Processing and Characterization of Nanocomposites Containing Green Nanofillers
	2.1 Introduction
	2.2 Processing Methods of Composites Involving Green Nanofillers
		2.2.1 Intercalation and Exfoliation
		2.2.2 In-Situ Polymerization
		2.2.3 Melt Processing
		2.2.4 Solvent Casting
		2.2.5 Electrospinning
		2.2.6 Deposition/Layer Assembly
		2.2.7 Sol-Gel Process
	2.3 Characterization of Nanocomposites Involving Green Nanofillers
		2.3.1 Spectroscopy Techniques
			2.3.1.1 X-Ray Diffraction (XRD)
			2.3.1.2 Fourier Transform Infrared Spectroscopy (FTIR)
			2.3.1.3 Raman Spectroscopy
			2.3.1.4 Atomic Force Microscopy
			2.3.1.5 Nuclear Magnetic Resonance Spectroscopy
		2.3.2 Thermal Analysis Techniques
			2.3.2.1 Thermogravimetric Analysis (TGA)
			2.3.2.2 Differential Scanning Calorimetry (DSC)
			2.3.2.3 Thermomechanical Analysis (TMA)
			2.3.2.4 Dynamic Mechanical Analysis (DMA)
			2.3.2.5 Differential Thermal Analysis (DTA)
		2.3.3 Microscopy Techniques
			2.3.3.1 Scanning Electron Microscopy (SEM)
			2.3.3.2 Transmission Electron Microscopy (TEM)
	2.4 Summary
	Acknowledgements
	References
Section I: Food Packaging
3. Developments in Chitosan-Based Nanocomposites for Food Packaging Applications
	3.1 Introduction
	3.2 Source and Production of Chitosan
	3.3 Functionalization of Chitosan
	3.4 Chitosan-Based Composites Processing Techniques
		3.4.1 Solution Casting
		3.4.2 Coating
		3.4.3 Layer-by-Layer Assembly
		3.4.4 Extrusion
	3.5 Antibacterial Nanocomposites
		3.5.1 Chitosan-Natural Polymer Composites
		3.5.2 Chitosan-Essential Oil Composites
		3.5.3 Chitosan-Metal Nanoparticle Composite
		3.5.4 Chitosan-Metal Oxide Nanoparticle Composites
		3.5.5 Chitosan-Synthetic Polymer Composites
	3.6 Barrier Nanocomposites
		3.6.1 Nanocellulose-Chitosan Composite
		3.6.2 Nanoclay-Chitosan Composites
		3.6.3 Metal Oxide Nanoparticles-Chitosan Composites
	3.7 Summary and Perspective
	References
4. Recent Advancements in Barrier Properties of Lignin Nanomaterial-Based Composites
	4.1 Introduction
	4.2 Lignin in the Food Packaging Industry
		4.2.1 The Structure of Native Lignin
	4.3 Lignin Nanoparticles (LNPS) in the Food-Packaging Industry
		4.3.1 Main Types of Lignin Nanoparticles (LNPS)
		4.3.2 Different Techniques Used in the Production of LNPS
		4.3.3 Mechanical Properties of LNPS
			4.3.3.1 The Mechanism of LNPS as an Antimicrobial Agent
	4.4 The Modification of Food Packaging Plastic Materials Using Lignin Nanoparticles (LNPS)
		4.4.1 Polyvinyl Alcohol (PVA)
		4.4.2 Polylactic Acid (PLA)
		4.4.3 Macroalgae
		4.4.4 Silver Nanaoparticles (AgNPs)
	4.5 Conclusions
	References
5. Modified Hydrophobic Starch - An Alternate Green Nanomaterial for Packaging Industry
	5.1 Introduction
		5.1.1 Classification of BioPlastics (Based on Starch)
		5.1.2 Plastic and Environment
		5.1.3 Starch as a Sustainable Polymer
		5.1.4 Starch Properties
		5.1.5 The Green Context
		5.1.6 Green Chemical Treatments of the Starch-Based Films
		5.1.7 Hydrophobic Starch-Based Composite and Nanocomposite
	5.2 Film-Forming Methods
		5.2.1 Solution Casting (Wet Process)
		5.2.2 Melt Processing (Dry Process)
		5.2.3 Nanotechnology in Starch Food Packaging
	5.3 Role of Hydrophobic Starch Packaging and Containers
		5.3.1 Consumer and Industrial Products
		5.3.2 Increasing Shelf Life of Goods
		5.3.3 Challenges
	5.4 Applications of Green Packaging Nanomaterial
	5.5 Conclusions and Future Perspectives
	References
6. Renewable Nanocomposites for Antibacterial Active Food Packaging
	6.1 Introduction
	6.2 Antimicrobial Agents in Active Food Packaging
		6.2.1 Moisture Scavengers
		6.2.2 Ethylene Absorbers
		6.2.3 Oxygen Scavengers
		6.2.4 Essential Oils (EOs)
		6.2.5 Enzymes
		6.2.6 Bacteriocins
		6.2.7 Antimicrobial Polymers
	6.3 Classification of Antimicrobial Films and Coatings According to Their Composition
		6.3.1 Polysaccharide-Based Films and Coatings
			6.3.1.1 Starch
			6.3.1.2 Cellulose
			6.3.1.3 Chitin/Chitosan
			6.3.1.4 Alginates
			6.3.1.5 Carrageenan
		6.3.2 Protein-Based Films and Coatings
			6.3.2.1 Milk Proteins
			6.3.2.2 Soy Proteins Isolates (SPI)
			6.3.2.3 Wheat Protein
			6.3.2.4 Collagen/Gelatin
		6.3.3 Lipid-Based Films and Coatings
			6.3.3.1 Waxes
			6.3.3.2 Glycerides
	6.4 Renewable Nanocomposites in Food Encapsulation
		6.4.1 Comparison between Microencapsulation and Nanoencapsulation
		6.4.2 Mechanisms of Release in Food Encapsulation
			6.4.2.1 Diffusion
			6.4.2.2 Osmosis
			6.4.2.3 Erosion
			6.4.2.4 Release by Swelling
			6.4.2.5 Release by Fragmentation
			6.4.2.6 Degradation
			6.4.2.7 Dissolution Mechanism
	6.5 Antimicrobial Bio-Nanocomposites for Food Packaging
		6.5.1 Classification of Biopolymers According to the Source of Production
			6.5.1.1 Biopolymers Extracted from Biomass
			6.5.1.2 Biopolymers Synthesized from Biomass Derived Monomers
			6.5.1.3 Biopolymers from Microorganisms
	6.6 Biotechnology in Biopolymers Developments
		6.6.1 Biotechnological Manufacturing of Adipic Acid from Lignin
		6.6.2 Bacterial Cellulose (BC)
		6.6.3 Production of Protein-Based Polymers
	6.7 Antimicrobial Activity of Different Fillers in Bio-Nanocomposites
		6.7.1 Metallic-Based Antimicrobial Bio-Nanocomposites
		6.7.2 Montmorillonite-Based Antimicrobial Bio-Nanocomposites
		6.7.3 Layered Double Hydroxide (LDH)-Based Antimicrobial Bio-Nanocomposites
	6.8 Safety of Different Antimicrobial Bio-Nanocomposites in Active Food Packaging Applications
		6.8.1 Regulation of Migration Test
		6.8.2 Experimental Approach for Migration Test
	6.9 Antimicrobial Renewable Nanocomposites in Active Food Packaging Marketing
	6.10 Conclusion and Future Perspectives
	References
Section II: Energy Conservation/Conversion
7. Applications of Lignin in Energy Conversion: Solar Cells, Fuel Cells and Photocatalysis
	7.1 Introduction
	7.2 Applications of Lignin in Photovoltaic Devices
		7.2.1 Lignin in Polymer Solar Cells
		7.2.2 Lignin in Dye Sensitized Solar Cells
		7.2.3 Lignin in Perovskite Solar Cells
	7.3 Applications of Lignin in Fuel Cells
		7.3.1 Lignin as Fuel or Mediator in FC
		7.3.2 Lignin as Membranes in FC
		7.3.3 Lignin as Electrode Materials in FC
	7.4 Applications of Lignin in Photocatalysis
		7.4.1 Photocatalytic Degradation of Organic Dyes
		7.4.2 Photocatalytic Degradation of Organic Drugs
		7.4.3 Photocatalytic Degradation of SO2 and CO2 Gas
	7.5 Conclusion and Perspectives
	References
8. Nanocellulose-Based Materials as Electrodes in Supercapacitors
	8.1 Introduction
	8.2 Preparation of NC-Based Conductive Materials for Energy-Storage Devices
	8.3 NC-Based Materials for Electrodes in Supercapacitor
		8.3.1 NC-CPs Based Materials
			8.3.1.1 Films
			8.3.1.2 Aerogels
		8.3.2 NC-Carbon-Based Materials
			8.3.2.1 Films
			8.3.2.2 Aerogels
		8.3.3 NC/CP/Graphene/Metallic Particles-Based Composite Materials
	8.4 Summary and Outlook
	Acknowledgement
	References
9. Employment of Green Polysaccharide Nanoparticles in Electrolyte Membranes
	9.1 Introduction
	9.2 Classification of Polymer Electrolytes PEs
		9.2.1 Dry-Solid Polymer Electrolytes (DSPEs)
		9.2.2 Plasticized Polymer Electrolytes (PPEs)
		9.2.3 Gel-Polymer Electrolytes (GPEs)
		9.2.4 Composite-Polymer Electrolytes (CPEs)
	9.3 Criteria of Membrane Selection
	9.4 Chemical Modification of Polysaccharides
		9.4.1 Examples of Chemically Modified and Combined Polysaccharides
			9.4.1.1 Cellulose-Based PEM
			9.4.1.2 Chitosan-Based PEM
			9.4.1.3 Pectin-Based PEM
			9.4.1.4 Carrageenan-Based PEM
			9.4.1.5 Alginate-Based PEM
	9.5 Sources of Polysaccharides Utilized as an Electrolyte Membrane
		9.5.1 Algal Polysaccharides
		9.5.2 Plant Polysaccharides
		9.5.3 Bacterial Polysaccharides
	9.6 A Variety of Applications Dealing with the Polysaccharide Electrolyte Membrane
		9.6.1 Fuel Cells
		9.6.2 Batteries
		9.6.3 Dye-Sensitized Solar Cells
		9.6.4 Supercapacitor
	9.7 Challenges and Opportunities in Using Polysaccharides as Electrolyte Membranes
	9.8 Conclusion
	Acknowledgements
	References
10. Nanocellulose-Based Separators for Energy Storage Devices
	10.1 Introduction
	10.2 NC-Based Separators for Batteries
		10.2.1 Lithium-Ion Batteries
		10.2.2 Lithium-Sulfur Batteries
		10.2.3 Lithium-Metal Batteries
	10.3 NC-Based Separators for Supercapacitors
	10.4 Summary and Outlook
	Acknowledgement
	References
11. Employment of Nanolignin in Energy-Storage Devices
	11.1 Energy Storage Technology
		11.1.1 Related Work/Background
		11.1.2 Lithium-Ion Batteries (LIBs)
		11.1.3 LIBs Anode Materials
		11.1.4 LIBs Cathode Materials
	11.2 Organic Electrodes for Batteries
		11.2.1 Introduction and Principle
		11.2.2 Quinones
		11.2.3 Relation between Organic Electrodes Used in Lithium-Ion Batteries and Quinones
		11.2.4 Introduction to the Nanolignin
		11.2.5 Origin and Nature of Nanolignin
			11.2.5.1 Origin of Nanolignin
			11.2.5.2 Nature of Nanolignin
		11.2.6 Chemical Structures of Nanolignin
		11.2.7 Nanolignin-Based Smart Materials
		11.2.8 Isolation's Techniques
			11.2.8.1 Kraft Process
			11.2.8.2 Sulfite process
	11.3 Kraft Nanolignin-Carbon Composite for Sustainable Cathode Materials
		11.3.1 Objective and Motivation
		11.3.2 Electrochemistry of Kraft Nanolignin-Carbon Composites
	11.4 Modification of Kraft Nanolignin with Dialdehyde Crosslinkers for Cathode Materials
	11.5 Oxidation of Kraft Nanolignin for Cathode Materials
	11.6 Other Advanced Carbon Materials from Nanolignin for Electrodes
		11.6.1 Carbon Fibres
			11.6.1.1 Spinning
			11.6.1.2 Thermostabilization
			11.6.1.3 Carbonization
			11.6.1.4 Developments in Nanolignin-Derived Carbon Fibres
			11.6.1.5 Microstructured Carbon Fibre Mats
			11.6.1.6 Activated Carbons
			11.6.1.7 Templated Carbons
			11.6.1.8 Activated Carbon Fibres
			11.6.1.9 Nanolignin Film
	11.7 Composites from Nanolignin for Electrodes
		11.7.1 Carbon/Nanolignin Composites
		11.7.2 Nanolignin-Derived Carbon/Active Material Composites
		11.7.3 Nanolignin/Active Materials and Nanolignin/Polymer Composites
	11.8 Nanolignin-Based Materials without Carbonization as Binders and Separators
		11.8.1 Nanolignin-Based Binder without Carbonization
		11.8.2 Nanolignin-Based Separator without Carbonization
	11.9 Conclusions
	How the Contribution Fits into the Book
	References
12. Nanocellulose-Based Facilitated Transport Membranes for Biogas Upgradation
	12.1 Introduction
	12.2 Nanocellulose-Extraction Methods, Types, Functionalization, and Applications
	12.3 Membrane Technology - Terms in Gas Separation
		12.3.1 Robeson's Upper Bound
	12.4 Facilitated Transport Mechanism (FTM): Concept, Types, and Applicability of NC in Utilizing the Mechanism for Biogas Upgradation
		12.4.1 Carriers: Working Principle
			12.4.1.1 Mobile Carrier Membranes
			12.4.1.2 Supported Liquid Membrane (SLM)
			12.4.1.3 Ion-Exchange Membranes (IEM)
			12.4.1.4 Fixed-Site Carrier Membranes (FSC)
		12.4.2 Applicability of NC in Biogas Upgradation
	12.5 Factors Affecting Permeability and Selectivity
		12.5.1 External Factors
			12.5.1.1 Effect of Relative Humidity
			12.5.1.2 Effect of Feed Pressure
			12.5.1.3 Effect of Temperature
			12.5.1.4 Effect of pH
		12.5.2 Effect of Internal Parameters
			12.5.2.1 Effect of Thickness
			12.5.2.2 Effect of Mechanical Properties of Membrane
			12.5.2.3 Crystallinity
	12.6 Summary
	Acknowledgement
	References
13. Aerogels with Green Nanofillers for Flame-Retardant Applications
	13.1 Introduction
		13.1.1 Classification of Aerogels
		13.1.2 Characteristics of Aerogels
			13.1.2.1 Porosity
			13.1.2.2 Mechanical Strength
			13.1.2.3 Thermal Conductivity
			13.1.2.4 Flame Retardancy
	13.2 Processing of Aerogels
		13.2.1 Thermal Drying
		13.2.2 Freeze Drying
		13.2.3 Supercritical Drying (SCD)
		13.2.4 Ambient Pressure Drying
		13.2.5 Processing of NC Aerogels
	13.3 Aerogel Functionalization
	13.4 Flame Retardant Green Aerogels
	13.5 Green Aerogels with Inorganic Nanofillers
		13.5.1 NC/Inorganic NC-Based Aerogels
		13.5.2 Chitin and Chitosan-Based Aerogels
		13.5.3 Starch-Based Aerogels
		13.5.4 Lignin-Based Aerogels
	13.6 Conclusions and Outlook
	References
Section III: Environment
14. Recent Trends in Nanochitosan-Based Materials for Environmental Remediation
	14.1 Introduction
	14.2 Nanochitosan
		14.2.1 Ionotropic Gelation
		14.2.2 Co-precipitation Method
	14.3 Nanochitosan-Based Materials for Water Remediation
		14.3.1 Heavy Metals
		14.3.2 Organic Pollutants
		14.3.3 Desalination
		14.3.4 Antibacterial/Antifouling
		14.3.5 Nanochitosan for Oil and Water Separation
	14.4 Nanochitosan-Derived Materials for Soil Remediation
		14.4.1 Inorganic (Heavy Metal) Contaminants
		14.4.2 Organic Contaminants
		14.4.3 Degradative Capacity of Contaminated Soils
		14.4.4 Chitosan in Sensor Technology
	14.5 Nanochitosan-Derived Materials for Air Remediation
		14.5.1 Chitosan-Based Electrospun Nanofiber Filters
		14.5.2 Chitosan-Based Hollow Fiber Membranes
		14.5.3 Chitosan-Based Nanotubes for Air Filtration
	14.6 Conclusion and Future Perspective
	References
15. Nanocellulose-Based Membranes for Water Purification
	15.1 Introduction
	15.2 Water Pollution
		15.2.1 Direct Sources of Pollution
		15.2.2 Indirect Sources of Pollution
	15.3 Major Contaminants and Their Characteristics
		15.3.1 Physical Contaminants
		15.3.2 Chemical Contaminants
		15.3.3 Biological Contaminants
	15.4 Lignocellulosic Biomass
		15.4.1 Cellulose
		15.4.2 Hemicellulose
		15.4.3 Lignin
	15.5 Nanocellulose (NC): Introduction/Fundamentals and Extraction
		15.5.1 Extraction
		15.5.2 Pretreatment
		15.5.3 Acid-Based Hydrolysis
		15.5.4 Enzymatic Hydrolysis
		15.5.5 Mechanical Fibrillation
	15.6 NC Membranes
	15.7 Preparation of NC Membrane
	15.8 Characteristics of NC Membrane
		15.8.1 Hydrophilicity
		15.8.2 Porosity
		15.8.3 High Surface Area
		15.8.4 Modifiable Surface Characteristics
		15.8.5 Electrostatic Interaction
		15.8.6 Water Flux
		15.8.7 Mechanical Strength
		15.8.8 Reusability and Biodegradability
	15.9 Water Filtration Mechanisms Using NC
		15.9.1 Filtration by Size Exclusion
		15.9.2 Filtration by Electrostatic Interaction
		15.9.3 Filtration by the Hydrophilicity
	15.10 Recent Developments in Water Filtration Using NC-Based Membranes
		15.10.1 Removal of Heavy Metal Ions
		15.10.2 Removal of Dyes
		15.10.3 Removal of Microorganisms
		15.10.4 Removal of Oil
	15.11 Types of Membrane Separation Techniques Presently in Use
	15.12 Conclusion
	15.13 Future Scope
	References
16. Nanocellulose- and Modified Wood-Based Sorbents for Oily Waste Cleanup
	16.1 Introduction
	16.2 Key Evaluators for Oil Sorbents
		16.2.1 Apparent Density
		16.2.2 Mechanical Properties
		16.2.3 Porosity and Sorption Capacity
		16.2.4 Sorption Selectivity
	16.3 Production Process of Nanocellulose- or Modified Wood-Based Sorbents
		16.3.1 Nanocellulose-Based Aerogel/Foam Sorbents
			16.3.1.1 Crosslinking
				16.3.1.1.1 Physical Crosslinking
				16.3.1.1.2 Chemical Crosslinking
			16.3.1.2 Hydrophobization
				16.3.1.2.1 Physical Blending
				16.3.1.2.2 Chemical Modification
				16.3.1.2.3 Thermal Treatment
		16.3.2 Modified Wood-Based Sorbents
	16.4 Summary and Outlook
	References
17. Carbon Nanomaterials as Renewable Water Purification Materials
	17.1 Introduction
	17.2 Carbon Nanotubes
		17.2.1 Synthesis of Carbon Nanotubes from Renewable Sources
	17.3 Activated Carbon
		17.3.1 Synthesis of Activated Carbon
	17.4 Carbon Dots
		17.4.1 Synthesis of Carbon Dots
	17.5 Graphene Oxide (GO)
		17.5.1 Synthesis of Graphene Oxide
	17.6 Fullerene
		17.6.1 Synthesis of Fullerenes
	17.7 MD Simulations for Water Treatment
	17.8 Water Purification System with Renewable Source
	17.9 Summary and Outlook
	References
18. Potential Applications of Polysaccharide-Based Aerogels
	18.1 Introduction to Aerogels
	18.2 Polysaccharide-Based Aerogels: Precursors and Methods of Preparation
		18.2.1 Precursors
		18.2.2 Methods of Preparation
	18.3 Applications of Polysaccharide-Based Aerogels
		18.3.1 Biomedical Applications
			18.3.1.1 As Biosensors
			18.3.1.2 Tissue Engineering and Bone Regeneration
			18.3.1.3 Wound Healing
			18.3.1.4 Drug Delivery
		18.3.2 Food Technology
			18.3.2.1 Food and Food Supplements
			18.3.2.2 Food Packaging
		18.3.3 Electronics Industry
			18.3.3.1 Supercapacitors
			18.3.3.2 For Batteries
			18.3.3.3 For Piezoelectric Devices
			18.3.3.4 In High Voltage Insulators
		18.3.4 In Chemical Engineering
			18.3.4.1 For Catalysis
			18.3.4.2 In Filtration and Separation
			18.3.4.3 In Green Technology
		18.3.5 In Construction Applications
			18.3.5.1 As Solar Energy Materials
			18.3.5.2 In Acoustic Devices
			18.3.5.3 As Thermal Insulators
			18.3.5.4 As Lightweight Materials
	18.4 Summary and Outlook
	References
19. Future Outlook and Challenges in the Applicability of Green Nanomaterials
	19.1 Packaging
	19.2 Energy Conversion/Conservation
	19.3 Water Treatment/Purification Technology
	19.4 Scope for Industrialization
	References
Index




نظرات کاربران