دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Singh V.N., Kushvaha S.S. (ed.) سری: ISBN (شابک) : 9781032397009 ناشر: CRC Press سال نشر: 2024 تعداد صفحات: 269 [270] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 10 Mb
در صورت تبدیل فایل کتاب Nanomaterials for Energy and Sensor Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نانومواد برای کاربردهای انرژی و حسگر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Nanomaterials for Energy and Sensor Applications Copyright Preface Acknowledgments Contents 1. Porous and Hollow Carbon Nanofibrous Electrode Materials from Electrospinning for Supercapacitor Energy Storage 1.1 IntroductIon to SupercapacItor 1.2 Electrospun Carbon NanofIbrous MaterIals for SupercapacItor Electrode 1.3 Porous/Hollow Carbon Nanofibrous Materials for Supercapacitor Electrode 1.4 Comparative Study of Porous and Hollow Carbon Nanofibrous Electrode Materials for Supercapacitor Application 1.4.1 Preparation of Electrode Materials 1.4.2 Electrode Materials Characterization 1.4.2.1 Morphology 1.4.2.2 Structure 1.4.3 Electrochemical Evaluation 1.4.3.1 Specific Capacitance 1.4.3.2 Electrochemical Impedance Spectroscopy (EIS) 1.4.3.3 Cycling Stability 1.4.3.4 Discussion 1.5 ConclusIons Acknowledgments References 2. Energy and Sensor Applications of Polymer Nanocomposites 2.1 Introduction 2.2 Energy Harvesting 2.3 Energy-Harvesting Sources 2.4 Energy-Harvesting Storage 2.5 Energy collection from conducting nanocomposites development tools 2.5.1 Development Tool for Te Harvesting 2.5.2 A Quick Look at Carbon Nanotubes (CNT) and Graphene 2.5.3 Self-Healing Polymer Composites Based on Graphene 2.5.4 Carbon Nanotube-Based as Self-Healing Polymer Nanocomposites 2.5.5 Extrinsic Self-Healing Polymers with CNTs 2.5.6 Carbon Nanotubes as Nano Reservoirs 2.5.7 Carbon Nanotubes as Effective Healing Agents 2.5.8 Intrinsic Self-Healing Using CNTs Composites Made of Polymers 2.5.9 Healable-Conductive Polymer Composites with Multiple Functions 2.5.10 Self-Healing Polymer Nanocomposites with Shear-Stiffening 2.5.11 Carbon Nanotubes with Customised Shapes Produce Energy-Collecting Textile 2.6 Energy-Collecting Modes 2.6.1 Energy Harvesting for Fossil Fuel Alternatives 2.6.2 Elephant Grass Energy Harvesting 2.6.3 Energy-Harvesting Hydrogen Fuel Cells 2.6.4 Solar Paint as a Source of Energy 2.6.5 Energy Harvesting from Waves 2.6.6 Energy-Harvesting Whisky 2.6.7 Vehicle Energy-Harvesting System 2.6.8 Energy Harvesting from a Sustainable Power Supply 2.6.9 Harvesting Mechanical Energy 2.7 Advance Applications and Technologies of Energy Harvesting 2.7.1 Mobile Phone 2.7.2 Solar Power 2.7.3 Thermoelectric 2.7.4 Piezoelectric 2.8 Innovative Techniques and Technologies 2.8.1 Medical and Fitness Equipment 2.8.2 Antennas 2.9 Sensor Applications of Polymer Nanocomposites 2.9.1 Polyaniline 2.9.2 Polypyrrole 2.9.3 Graphene and Its Derivatives 2.9.3.1 Graphene 2.9.3.2 Graphene Oxide 2.9.3.3 Carbon Nanotubes 2.10 Conclusion and Future Scope References 3. Nanostructured Silicon for Solar Energy Conversion Applications 3.1 Introduction 3.2 Reduced Surface Reflectivity 3.3 SIlIcon Nanostructures 3.3.1 Porous Silicon (PS) 3.3.2 Silicon Nanowire (SiNW) 3.3.3 Physical Properties of Silicon Nanostructures 3.3.3.1 Electronic and Optical Properties 3.4 Thermal and Mechanical Properties 3.4.1 Light Trapping 3.5 Nanostructured SIlIcon FabrIcatIon Methods 3.5.1 Bottom-Up Silicon Nanostructure Formation 3.5.1.1 Vapour-Liquid-Solid (VLS) Method 3.5.1.2 Chemical Vapour Deposition (CVD) 3.5.2 Top-Down Silicon Nanostructure Formation 3.5.2.1 Deep Reactive Ion Etching 3.6 FabrIcatIon Methods 3.6.1 Electrochemical Etching 3.6.1.1 PS Formation, Etching Chemistry, and Theory 3.6.2 Electropolishing 3.6.3 Metal-Assisted Chemical Etching (MACE) 3.6.4 Possible Mechanism for MACE of Silicon 3.7 Role of Catalyst Metals 3.8 Types of Deposition Method 3.9 The Shape of the Metal and Distance Between Metals 3.9.1 ECE 3.9.2 MACE 3.10 ConclusIon References 4. Selenium-Based Metal Chalcogenides Thin Films on Flexible Metal Foils for PEC Water-Splitting Application 4.1 Introduction 4.2 Experimental Section 4.3 Result and Discussion 4.4 Conclusion and Future Challenges Acknowledgments References 5. Quantum-Cutting Phosphors for Thermal Sensor Applications 5.1 Introduction 5.2 Quantum-СuttIng Phenomenon 5.2.1 Visible Quantum Сutting 5.2.2 Near IR (NIR) Quantum Cutting 5.3 Phosphor Thermography 5.4 Thermal StabIlIty 5.5 Conclusion References 6. A Review of Flexible Sensors 6.1 Introduction 6.2 Working Mechanisms of Flexible Sensors 6.2.1 Piezoresistive Type 6.2.1.1 Geometrical Effect 6.2.1.2 Structural Effect 6.2.1.3 Disconnection Mechanism 6.2.2 Piezoelectric Type 6.2.3 Capacitive Type 6.3 Basic Parameters of a Flexible Sensor 6.3.1 Sensitivity 6.3.2 Linearity 6.3.3 Selectivity 6.3.4 Resolution 6.3.5 Detection Limit 6.3.6 Durability 6.3.7 Hysteresis and Response Time 6.4 MaterIals and FabrIcatIon TechnIques 6.4.1 Conductors 6.4.2 Semiconductors 6.4.3 Insulators/Dielectrics 6.4.4 Substrates 6.5 Types of Flexible Sensors and Their Applications 6.5.1 Strain Sensors 6.5.2 Pressure Sensors 6.5.3 Shear Stress Sensors 6.5.4 Temperature Sensors 6.5.5 Humidity Sensors 6.5.6 Magnetic Sensors 6.5.7 Chemical Sensors 6.5.8 Electromagnetic Radiation Sensors 6.5.9 Multi-modal Sensors 6.5.10 Electropotential Sensors 6.5.11 Orientation Sensors 6.5.12 Ultrasonic Sensors 6.6 Summary References 7. The Transition from Pb- to Pb-Free Halide-Based Perovskite Inks for Optoelectronic Application 7.1 Introduction 7.2 Synthesis Methods 7.2.1 Ligand-Assisted Reprecipitation Method (LARP) 7.2.2 Hot-Injection Method with Centrifugation or Solvothermal Synthesis 7.3 A Brief Review of the Work Already Being Done 7.4 Glimpse on Device Fabrication 7.5 Properties of Perovskite Materials 7.5.1 Strong Quantum-Confinement Effect 7.5.2 A Wider Range of Optical Properties 7.5.3 High Quantum Efficiency 7.6 Applications of Metal-Halide Perovskites 7.6.1 Solar Cells 7.6.2 Light-Emitting Diodes (LEDs) 7.6.3 Lasing 7.6.4 Photodetectors 7.6.5 In Opto-electronic Device 7.7 Conclusion 7.8 Challenges and Future Scope Acknowledgments References 8. Impacts of Working Electrode Parameters on Dye-Sensitised Solar Cell Performance 8.1 Introduction 8.2 WorkIng Principle 8.3 Substrate 8.4 Compact Layer and Blocking Layer 8.5 Mesoporous Active Layer 8.6 Morphology 8.7 Active Layer Preparation 8.7.1 Direct Growth 8.7.2 TiO2 Nanostructures Powder Preparation 8.7.2.1 TiO2 Paste Preparation 8.7.2.2 Thin Film Active Layer Preparation 8.7.3 Small Lab-Scale DSSC Towards Large Areas for Practical Applications 8.7.4 DSSC Cell to Module Towards Commercialisation 8.8 Conclusion References 9. Nanostructured Metal Oxides for Photocatalytic Water Splitting 9.1 Introduction 9.2 Mechanism of Photocatalytic Water Splitting 9.3 Essential Conditions for the Material for the Photocatalyst 9.4 History of Photocatalysis 9.5 Binary Metal Oxides 9.5.1 Titanates 9.5.2 Tantalates and Niobates 9.5.3 Other Metal Oxides 9.6 Role of Structural Parameters in Enhancing Photocatalytic Efficiency 9.6.1 Effect of Size 9.6.2 Effect of Morphology 9.6.3 Effect of Crystal Structure 9.6.4 Effect of Exposed Facets 9.6.5 Effect of Electrical Polarization 9.7 Conclusion Acknowledgments References 10. Nanofluidics for Heat Transfer System and Energy Applications 10.1 Introduction 10.2 NanofluIdIcs vs. MIcro-FluIdIcs 10.3 Heat Transfer in NanofluIds 10.3.1 Mechanism of Heat Transfer 10.3.2 Models of Heat Transfer 10.3.2.1 Classical Models 10.3.2.2 Dynamic Models 10.4 Nanomaterials for Nanofluidics in Heat Transfer 10.5 Formulating Nanofluids 10.5.1 Two-Step Method 10.5.2 Single-Step Method 10.6 Measurement of Thermal Conductivity of Fluids 10.7 Nanofluidics for Heat Transfer Systems 10.8 Applications 10.8.1 Automotive 10.8.2 Electronics Cooling 10.8.3 Nuclear Reactors 10.8.4 Solar Thermal Systems Applications 10.8.5 Other Emerging Applications 10.9 Challenges and Sustainability Assessment 10.10 ConclusIon and Outlook References Index