ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Nanomaterials for Energy and Sensor Applications

دانلود کتاب نانومواد برای کاربردهای انرژی و حسگر

Nanomaterials for Energy and Sensor Applications

مشخصات کتاب

Nanomaterials for Energy and Sensor Applications

ویرایش:  
نویسندگان: ,   
سری:  
ISBN (شابک) : 9781032397009 
ناشر: CRC Press 
سال نشر: 2024 
تعداد صفحات: 269
[270] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 10 Mb 

قیمت کتاب (تومان) : 55,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Nanomaterials for Energy and Sensor Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب نانومواد برای کاربردهای انرژی و حسگر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Half Title
Nanomaterials for Energy and Sensor Applications
Copyright
Preface
Acknowledgments
Contents
1. Porous and Hollow Carbon Nanofibrous Electrode Materials from Electrospinning for Supercapacitor Energy Storage
	1.1 IntroductIon to SupercapacItor
	1.2 Electrospun Carbon NanofIbrous MaterIals for SupercapacItor Electrode
	1.3 Porous/Hollow Carbon Nanofibrous Materials for Supercapacitor Electrode
	1.4 Comparative Study of Porous and Hollow Carbon Nanofibrous Electrode Materials for Supercapacitor Application
		1.4.1 Preparation of Electrode Materials
		1.4.2 Electrode Materials Characterization
			1.4.2.1 Morphology
			1.4.2.2 Structure
		1.4.3 Electrochemical Evaluation
			1.4.3.1 Specific Capacitance
			1.4.3.2 Electrochemical Impedance Spectroscopy (EIS)
			1.4.3.3 Cycling Stability
			1.4.3.4 Discussion
	1.5 ConclusIons
	Acknowledgments
	References
2. Energy and Sensor Applications of Polymer Nanocomposites
	2.1 Introduction
	2.2 Energy Harvesting
	2.3 Energy-Harvesting Sources
	2.4 Energy-Harvesting Storage
	2.5 Energy collection from conducting nanocomposites development tools
		2.5.1 Development Tool for Te Harvesting
		2.5.2 A Quick Look at Carbon Nanotubes (CNT) and Graphene
		2.5.3 Self-Healing Polymer Composites Based on Graphene
		2.5.4 Carbon Nanotube-Based as Self-Healing Polymer Nanocomposites
		2.5.5 Extrinsic Self-Healing Polymers with CNTs
		2.5.6 Carbon Nanotubes as Nano Reservoirs
		2.5.7 Carbon Nanotubes as Effective Healing Agents
		2.5.8 Intrinsic Self-Healing Using CNTs Composites Made of Polymers
		2.5.9 Healable-Conductive Polymer Composites with Multiple Functions
		2.5.10 Self-Healing Polymer Nanocomposites with Shear-Stiffening
		2.5.11 Carbon Nanotubes with Customised Shapes Produce Energy-Collecting Textile
	2.6 Energy-Collecting Modes
		2.6.1 Energy Harvesting for Fossil Fuel Alternatives
		2.6.2 Elephant Grass Energy Harvesting
		2.6.3 Energy-Harvesting Hydrogen Fuel Cells
		2.6.4 Solar Paint as a Source of Energy
		2.6.5 Energy Harvesting from Waves
		2.6.6 Energy-Harvesting Whisky
		2.6.7 Vehicle Energy-Harvesting System
		2.6.8 Energy Harvesting from a Sustainable Power Supply
		2.6.9 Harvesting Mechanical Energy
	2.7 Advance Applications and Technologies of Energy Harvesting
		2.7.1 Mobile Phone
		2.7.2 Solar Power
		2.7.3 Thermoelectric
		2.7.4 Piezoelectric
	2.8 Innovative Techniques and Technologies
		2.8.1 Medical and Fitness Equipment
		2.8.2 Antennas
	2.9 Sensor Applications of Polymer Nanocomposites
		2.9.1 Polyaniline
		2.9.2 Polypyrrole
		2.9.3 Graphene and Its Derivatives
			2.9.3.1 Graphene
			2.9.3.2 Graphene Oxide
			2.9.3.3 Carbon Nanotubes
	2.10 Conclusion and Future Scope
	References
3. Nanostructured Silicon for Solar Energy Conversion Applications
	3.1 Introduction
	3.2 Reduced Surface Reflectivity
	3.3 SIlIcon Nanostructures
		3.3.1 Porous Silicon (PS)
		3.3.2 Silicon Nanowire (SiNW)
		3.3.3 Physical Properties of Silicon Nanostructures
			3.3.3.1 Electronic and Optical Properties
	3.4 Thermal and Mechanical Properties
		3.4.1 Light Trapping
	3.5 Nanostructured SIlIcon FabrIcatIon Methods
		3.5.1 Bottom-Up Silicon Nanostructure Formation
			3.5.1.1 Vapour-Liquid-Solid (VLS) Method
			3.5.1.2 Chemical Vapour Deposition (CVD)
		3.5.2 Top-Down Silicon Nanostructure Formation
			3.5.2.1 Deep Reactive Ion Etching
	3.6 FabrIcatIon Methods
		3.6.1 Electrochemical Etching
			3.6.1.1 PS Formation, Etching Chemistry, and Theory
		3.6.2 Electropolishing
		3.6.3 Metal-Assisted Chemical Etching (MACE)
		3.6.4 Possible Mechanism for MACE of Silicon
	3.7 Role of Catalyst Metals
	3.8 Types of Deposition Method
	3.9 The Shape of the Metal and Distance Between Metals
		3.9.1 ECE
		3.9.2 MACE
	3.10 ConclusIon
	References
4. Selenium-Based Metal Chalcogenides Thin Films on Flexible Metal Foils for PEC Water-Splitting Application
	4.1 Introduction
	4.2 Experimental Section
	4.3 Result and Discussion
	4.4 Conclusion and Future Challenges
	Acknowledgments
	References
5. Quantum-Cutting Phosphors for Thermal Sensor Applications
	5.1 Introduction
	5.2 Quantum-СuttIng Phenomenon
		5.2.1 Visible Quantum Сutting
		5.2.2 Near IR (NIR) Quantum Cutting
	5.3 Phosphor Thermography
	5.4 Thermal StabIlIty
	5.5 Conclusion
	References
6. A Review of Flexible Sensors
	6.1 Introduction
	6.2 Working Mechanisms of Flexible Sensors
		6.2.1 Piezoresistive Type
			6.2.1.1 Geometrical Effect
			6.2.1.2 Structural Effect
			6.2.1.3 Disconnection Mechanism
		6.2.2 Piezoelectric Type
		6.2.3 Capacitive Type
	6.3 Basic Parameters of a Flexible Sensor
		6.3.1 Sensitivity
		6.3.2 Linearity
		6.3.3 Selectivity
		6.3.4 Resolution
		6.3.5 Detection Limit
		6.3.6 Durability
		6.3.7 Hysteresis and Response Time
	6.4 MaterIals and FabrIcatIon TechnIques
		6.4.1 Conductors
		6.4.2 Semiconductors
		6.4.3 Insulators/Dielectrics
		6.4.4 Substrates
	6.5 Types of Flexible Sensors and Their Applications
		6.5.1 Strain Sensors
		6.5.2 Pressure Sensors
		6.5.3 Shear Stress Sensors
		6.5.4 Temperature Sensors
		6.5.5 Humidity Sensors
		6.5.6 Magnetic Sensors
		6.5.7 Chemical Sensors
		6.5.8 Electromagnetic Radiation Sensors
		6.5.9 Multi-modal Sensors
		6.5.10 Electropotential Sensors
		6.5.11 Orientation Sensors
		6.5.12 Ultrasonic Sensors
	6.6 Summary
	References
7. The Transition from Pb- to Pb-Free Halide-Based Perovskite Inks for Optoelectronic Application
	7.1 Introduction
	7.2 Synthesis Methods
		7.2.1 Ligand-Assisted Reprecipitation Method (LARP)
		7.2.2 Hot-Injection Method with Centrifugation or Solvothermal Synthesis
	7.3 A Brief Review of the Work Already Being Done
	7.4 Glimpse on Device Fabrication
	7.5 Properties of Perovskite Materials
		7.5.1 Strong Quantum-Confinement Effect
		7.5.2 A Wider Range of Optical Properties
		7.5.3 High Quantum Efficiency
	7.6 Applications of Metal-Halide Perovskites
		7.6.1 Solar Cells
		7.6.2 Light-Emitting Diodes (LEDs)
		7.6.3 Lasing
		7.6.4 Photodetectors
		7.6.5 In Opto-electronic Device
	7.7 Conclusion
	7.8 Challenges and Future Scope
	Acknowledgments
	References
8. Impacts of Working Electrode Parameters on Dye-Sensitised Solar Cell Performance
	8.1 Introduction
	8.2 WorkIng Principle
	8.3 Substrate
	8.4 Compact Layer and Blocking Layer
	8.5 Mesoporous Active Layer
	8.6 Morphology
	8.7 Active Layer Preparation
		8.7.1 Direct Growth
		8.7.2 TiO2 Nanostructures Powder Preparation
			8.7.2.1 TiO2 Paste Preparation
			8.7.2.2 Thin Film Active Layer Preparation
		8.7.3 Small Lab-Scale DSSC Towards Large Areas for Practical Applications
		8.7.4 DSSC Cell to Module Towards Commercialisation
	8.8 Conclusion
	References
9. Nanostructured Metal Oxides for Photocatalytic Water Splitting
	9.1 Introduction
	9.2 Mechanism of Photocatalytic Water Splitting
	9.3 Essential Conditions for the Material for the Photocatalyst
	9.4 History of Photocatalysis
	9.5 Binary Metal Oxides
		9.5.1 Titanates
		9.5.2 Tantalates and Niobates
		9.5.3 Other Metal Oxides
	9.6 Role of Structural Parameters in Enhancing Photocatalytic Efficiency
		9.6.1 Effect of Size
		9.6.2 Effect of Morphology
		9.6.3 Effect of Crystal Structure
		9.6.4 Effect of Exposed Facets
		9.6.5 Effect of Electrical Polarization
	9.7 Conclusion
	Acknowledgments
	References
10. Nanofluidics for Heat Transfer System and Energy Applications
	10.1 Introduction
	10.2 NanofluIdIcs vs. MIcro-FluIdIcs
	10.3 Heat Transfer in NanofluIds
		10.3.1 Mechanism of Heat Transfer
		10.3.2 Models of Heat Transfer
			10.3.2.1 Classical Models
			10.3.2.2 Dynamic Models
	10.4 Nanomaterials for Nanofluidics in Heat Transfer
	10.5 Formulating Nanofluids
		10.5.1 Two-Step Method
		10.5.2 Single-Step Method
	10.6 Measurement of Thermal Conductivity of Fluids
	10.7 Nanofluidics for Heat Transfer Systems
	10.8 Applications
		10.8.1 Automotive
		10.8.2 Electronics Cooling
		10.8.3 Nuclear Reactors
		10.8.4 Solar Thermal Systems Applications
		10.8.5 Other Emerging Applications
	10.9 Challenges and Sustainability Assessment
	10.10 ConclusIon and Outlook
	References
Index




نظرات کاربران