دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Indu Bhushan (editor), Vivek Kumar Singh (editor), Durgesh Kumar Tripathi (editor) سری: ISBN (شابک) : 3030345432, 9783030345433 ناشر: Springer سال نشر: 2020 تعداد صفحات: 432 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 9 مگابایت
در صورت تبدیل فایل کتاب Nanomaterials and Environmental Biotechnology (Nanotechnology in the Life Sciences) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نانومواد و بیوتکنولوژی محیطی (نانو فناوری در علوم زیستی) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Contents Chapter 1: Nanoparticles and Plant Interaction with Respect to Stress Response 1.1 Introduction 1.2 The Nanoparticle and Its Role in Plant Stress 1.3 Mechanistic Interaction of Nanoparticles in Plant Stress 1.3.1 Phytotoxicity Mechanism of Nanoparticles 1.3.2 Uptake Mechanism of Nanoparticles 1.3.3 Translocation Mechanism of Nanoparticles 1.3.4 Interaction Mechanism of Nanoparticles Leading to Stress 1.4 Conclusions and Future Prospects References Chapter 2: Nanoencapsulation Technology: Boon to Food Packaging Industries 2.1 Introduction 2.2 Nanomaterials Used for Food Packaging 2.2.1 Lipid-Based Encapsulation of Essential Oils 2.2.1.1 Emulsions 2.2.1.2 Solid Lipid Nanoparticle (SLNs) 2.2.1.3 Liposome as Nanocarriers of Bioactive Molecules 2.2.1.4 Micelles 2.2.2 Polymer-Based Encapsulation of Essential Oils 2.3 Active Packaging of EO Nanoparticles as Food Protectant 2.4 Mode of Action of Nanoparticles 2.5 Factors Controlling the Stability of Nanoparticles in Food System 2.5.1 Free Energy of Different Phases 2.5.2 Droplet Aggregation and Particle Size 2.5.3 Emulsifier Type 2.5.4 Ionic Strength and pH 2.5.5 Thermal Processing 2.6 Nanoparticles as Active Biosensor for Detection of Food Contaminants (Chemicals and Food-Borne Pathogens) 2.7 Application of Nanoparticles in Different Food Sectors 2.8 Safety Issues Associated with Application of Nanotechnology in Food Packaging/Food Preservation 2.9 Future Prospective References Chapter 3: Ecotoxicity of Metallic Nanoparticles and Possible Strategies for Risk Assessment 3.1 Introduction 3.2 Synthesis of Metallic Nanoparticles 3.3 Application of Nanoparticles 3.4 Toxicity of Metallic Nanoparticles 3.4.1 Uptake of Metallic Nanoparticles 3.4.2 Mode of Action of Nanoparticles 3.5 Ecotoxicology Assessment and Possible Strategies 3.6 Conclusions References Chapter 4: Tripartite Interaction Among Nanoparticles, Symbiotic Microbes, and Plants: Current Scenario and Future Perspectives 4.1 Introduction 4.2 Nanoparticles Versus Plant Growth 4.3 Nanoparticles Versus Soil Microorganisms 4.4 Nanoparticles Versus Symbioses 4.4.1 ZnO Nanoparticle Versus Symbioses 4.4.2 Ag Nanoparticle Versus Symbioses 4.4.3 CeO2 Nanoparticle Versus Symbioses 4.4.4 Fe3O4 Nanoparticle Versus Symbioses 4.5 Conclusions 4.6 Future Perspectives References Chapter 5: Effect of Nanoparticles on Plant Growth and Physiology and on Soil Microbes 5.1 Introduction 5.2 Effect of Nanoparticles on Plants 5.2.1 Effects of NPs on Photosynthesis 5.3 Effect of Nanoparticles on the Soil Microbial Community 5.4 Impact of Carbon Nanotubes on Plants 5.4.1 Effect of CNTs on Photosynthesis Mechanism 5.5 Effect of CNTs on Soil Microbial Community 5.6 Future Possibilities References Chapter 6: Recent Trends and Advancement Toward Phyto-mediated Fabrication of Noble Metallic Nanomaterials: Focus on Silver, Gold, Platinum, and Palladium 6.1 Introduction 6.2 An Overview on Phyto-mediated Fabrication of Metallic NMs/Noble Metallic NMs 6.3 Recent Fabrication Trends of Silver, Gold, Platinum, and Palladium NMs Using Plant System 6.4 General Mechanism of Silver, Gold, Platinum, and Palladium NM Fabrication in Plant System 6.5 Key Factors/Parameters for Optimal Fabrication of Silver, Gold, Platinum, and Palladium 6.6 Characterization of Metallic NMs (Silver, Gold, Platinum, and Palladium) 6.7 Conclusions and Future Perspective References Chapter 7: Development of Environmental Biosensors for Detection, Monitoring, and Assessment 7.1 Introduction 7.2 Biosensing Techniques 7.2.1 Biosensor System 7.2.2 Classification of Biosensors 7.2.2.1 On the Basis of Bio-recognition Element Immunosensors Enzymatic Biosensors Whole-Cell Based Biosensors Genosensors Aptasensors Biomimetic Biosensors 7.2.2.2 On the Basis of the Transduction Principle Electrochemical Biosensors Optical Biosensors Piezoelectric Biosensors Thermometric Biosensors Magnetic Biosensors 7.3 Environmental Biosensors 7.3.1 Pesticides 7.3.2 Pathogens 7.3.3 Potentially Toxic Elements or Heavy Metals 7.3.4 Toxins 7.3.5 Endocrine-Disrupting Chemicals (EDCs) 7.3.6 Other Environmental Compounds 7.4 Summary References Chapter 8: Nano-Based Materials and Their Synthesis 8.1 Introduction 8.2 Green Synthesis of MNPs (Biological/Bioreduction) 8.3 Green Synthesis of Metallic Nanoparticles Using Plant Extracts 8.4 Nanoparticle Synthesis Using Microorganisms 8.5 Conclusion References Chapter 9: Nano-based Composites and Their Synthesis 9.1 Introduction 9.2 Synthesis of Nanocomposites 9.2.1 Ceramic Matrix Nanocomposites (CMNC) 9.2.1.1 Synthesis of Ceramic CNT Nanocomposites 9.2.2 Metal Matrix Nanocomposites 9.2.2.1 Synthesis of CNT-Reinforced Metal Matrix Composites 9.2.3 Polymer Nanocomposites 9.2.3.1 In Situ Polymerization 9.2.3.2 Melt Processing 9.2.3.3 Solution Blending 9.2.3.4 Other Techniques 9.2.3.5 Synthesis of Polymer-CNT Nanocomposites 9.3 Conclusion References Chapter 10: Appraisal of Chitosan-Based Nanomaterials in Enzyme Immobilization and Probiotics Encapsulation 10.1 Chitosan 10.2 Why Chitosan Is Useful in Enzyme Immobilization 10.3 Nanoparticles 10.3.1 Methods of Preparation of Nanoparticles 10.3.2 Methods of Preparation of Chitosan Nanoparticles for Enzyme Immobilization 10.3.2.1 Reverse Micelle Method 10.3.2.2 Ionic Cross-Linking Method 10.3.2.3 Coprecipitation Method 10.3.2.4 Emulsion Cross-Linking Method 10.3.2.5 Ionotropic Gelation Method 10.4 Enzyme Immobilization 10.4.1 Methods of Preparation of Immobilized Enzymes 10.4.1.1 Support Binding 10.4.1.2 Cross-Linking 10.4.1.3 Entrapment 10.4.2 Supports to the Enzymes 10.4.2.1 Classic Materials Inorganic Materials Mineral Materials Carbon-Based Materials Organic Materials 10.4.2.2 New Materials Synthetic Materials Biopolymers 10.4.3 Immobilization of Enzyme Through Chitosan Nanoparticles 10.4.3.1 β-Galactosidase 10.4.3.2 Cellulase 10.4.3.3 Glucose Oxidase 10.4.3.4 Invertase 10.4.3.5 Glucoamylase 10.4.3.6 Glucosidase 10.4.3.7 Xylanase 10.4.3.8 α-Amylase 10.4.3.9 Pectinase 10.4.3.10 Laccase 10.4.3.11 Lipase 10.4.3.12 Protease 10.4.3.13 Alcohol Dehydrogenase 10.4.3.14 Penicillin G Acylase 10.4.3.15 Serratiopeptidase 10.5 Probiotics 10.5.1 Probiotic Encapsulation 10.5.2 Methods of Encapsulation 10.5.3 Techniques of Coated Capsules 10.5.4 Probiotics Encapsulation in Chitosan-Based Nanomaterials 10.6 Conclusion References Chapter 11: Nano-Based Drug Delivery Tools for Personalized Nanomedicine 11.1 Introduction 11.2 Applications of Nanotechnology in Biological Sciences 11.2.1 Drug Delivery in Cancer 11.2.1.1 Gelatin Nanoparticle 11.2.1.2 PEGylated Liposomes 11.2.1.3 Nanovaccines 11.2.2 Phytochemical-Based Nanodrugs 11.2.2.1 Nanocurcumin 11.2.2.2 Nano-ginseng 11.2.2.3 Nano-quercetin 11.2.2.4 pH-Dependent Nanotools 11.3 Disease Diagnostics 11.3.1 Magnetic and Electrochemical-Based Nanoparticles 11.3.2 Gold Nanoparticles 11.3.3 Nitric Oxide-Embedded Nanoparticles 11.3.4 Sunscreen 11.3.5 Personalized Nanomedicine 11.3.6 Personalized Nanodevices 11.3.7 Microfluidic Channels on Bar Charts of Glass Chip 11.3.8 Proteinticles 11.3.9 Aptamers 11.4 Conclusion References Chapter 12: Nanotechnology as Potential and Innovative Platform Toward Wastewater Treatment: An Overview 12.1 Introduction 12.2 Fabrication of Nanoparticles: Physical, Chemical, and Biogenic Approaches 12.3 Characterization Techniques of Fabricated Nanoparticles 12.4 Nanoparticles: Potential Platform for the Removal of Water Contaminants 12.5 Limitations of Nanoparticle-Based Wastewater Treatment 12.6 Conclusion References Chapter 13: Solid Lipid Nanoparticles 13.1 Introduction 13.2 Composition of Solid Lipid Nanoparticles 13.2.1 Lipids 13.2.2 Surface-Active Compounds (SACs) 13.3 Techniques Used for Preparation 13.3.1 High-Pressure Homogenization 13.3.1.1 Hot Homogenization 13.3.1.2 Cold Homogenization 13.3.2 Ultrasound Dispersion/Ultrasonication 13.3.3 Solvent Emulsification/Evaporation 13.3.4 Microemulsion-Based Technique 13.3.5 Double Emulsion Method 13.3.6 Membrane Contactor Technique 13.3.7 Supercritical Fluid (SCF) Technology 13.4 Characterization of Solid Lipid Nanoparticles 13.4.1 Physical Properties 13.4.1.1 Size and Its Distribution Photon Correlation Spectroscopy Laser Diffraction (LD) Spectroscopy 13.4.2 Microscopic Methods 13.4.2.1 Shape and Surface Morphology Electron Microscopy Atomic Force Microscopy 13.4.3 Surface Charge 13.4.4 Drug Encapsulation and Loading Capacity 13.4.4.1 Determination of Incorporated Drug 13.4.5 Drug Localization and Drug Release 13.5 Applications of Solid Lipid Nanoparticles 13.5.1 Parenteral Delivery 13.5.2 Oral Delivery 13.5.3 Transdermal and Topical Use 13.5.4 Pulmonary, Nasal and Ocular Administration 13.6 SLNs as a Carrier for Site-Specific Delivery 13.6.1 Application in Gene Delivery 13.6.2 SLN as Carriers for Peptides and Protein Drugs 13.6.3 Lipid Nanoparticle as a Carrier for Vaccine 13.7 Stability 13.8 Conclusions References Chapter 14: Nanotechnology Applications and Synthesis of Graphene as Nanomaterial for Nanoelectronics 14.1 Introduction 14.1.1 Types of Nanomaterials 14.1.2 Applications of Nanotechnology 14.1.3 Advantages of Nanotechnology 14.2 Graphene as Nanotechnology Material 14.3 Graphene and Its Future Aspects 14.3.1 Properties of Graphene 14.3.2 Different Types of Nanostructures and Methods of Graphene Preparation 14.3.3 Characterization of Graphene Material 14.3.4 Potential Applications of Graphene (Hua-Qiang et al. 2013; Awano 2009; Lam and Liang 2011) 14.4 CNT and Its Growing Demand 14.5 Conclusion References Chapter 15: Efficiency Enhancement of Renewable Energy Systems Using Nanotechnology 15.1 Introduction 15.2 Origin of Nanotechnology: The Science of Small Where Small Is Effective 15.3 Rise of Nanomaterials and Its Applications in Diverse Areas 15.4 Nanotechnology: The Future of Renewable Energy 15.4.1 Benefits and Applications of Nanotechnology in the Renewable Energy Sector 15.4.2 Solar Energy 15.4.3 Solar Photovoltaic Cells 15.5 Nanofluids for Solar Energy Applications 15.5.1 Solar Cells 15.5.2 Dye-Sensitized Solar Cells (DSSC/DSC/DYSC/Grätzel Cell) 15.5.3 Dye-Sensitized Nanocrystalline Solar Cells 15.5.4 Organic Polymer-Derived PV Solar Cell (OPV) 15.5.5 Hot Carrier Solar Cells 15.6 Hydrogen Energy 15.6.1 Fuel Cells 15.6.2 Diesel Engine 15.6.3 Biomass/Bioenergy 15.6.4 Bio-oil 15.6.5 Bio-diesel 15.6.6 Wind Energy 15.6.7 Geothermal Energy 15.6.8 Tidal Energy 15.7 Conclusions References Chapter 16: Wastewater and Industrial Effluent Treatment by Using Nanotechnology 16.1 Introduction 16.2 Existing Pollutants and Their Traditional Treatment Technologies 16.3 Advanced Technologies for Wastewater Treatment 16.3.1 Membrane Filtration 16.3.2 Nanotechnology 16.3.3 Automatic Variable Filtration (AVF) Technology 16.3.4 Advanced Photo-Oxidation Process (APOP) 16.3.5 Microbial Fuel Cells 16.3.6 New Urban Sanitation Technology 16.3.7 Natural Treatment Systems (NTSs) 16.3.8 Coke Oven (CO) By-Product Wastewater Treatment 16.3.9 Urine Separating Process 16.4 Nanotechnology 16.4.1 What Is Nanotechnology? 16.4.2 Nanotechnology in Wastewater Treatment 16.4.2.1 Adsorption 16.4.2.2 Nanofiltration 16.4.2.3 Nanofiber 16.4.2.4 Photocatalysis 16.4.2.5 Nanocatalysts 16.4.2.6 Sensing and Monitoring 16.5 Pros and Cons of Nanotechnology 16.6 Future Aspects References Chapter 17: Biomolecular and Cellular Manipulation and Detection (Nanofluidics and Micro- and Nanotechnologies in Integrative Biology) 17.1 General Introduction 17.2 Buckyballs and Nanotubes 17.2.1 Application of Nanotubes in Integrative Biology 17.2.1.1 Sending Signals to Nerve Cells via Nanotubes/Neuron-Nanotube Electric Interface 17.2.1.2 Cell Membrane Interaction with Nanotube Transistor 17.2.1.3 Artificial Retina 17.3 Nanobots 17.4 Nanoactuators 17.5 Nanobombs 17.6 Nanowires 17.7 Lab-on-Chip 17.8 Organs-on-Chip 17.9 Conclusion References Chapter 18: Bio-Based Nano-Lubricants for Sustainable Manufacturing 18.1 Introduction 18.1.1 Types of Cutting Fluids 18.1.1.1 Neat Cutting Oils 18.1.1.2 Water-Soluble Fluids 18.1.1.3 Emulsifiable Oils 18.1.1.4 Chemical (Synthetic Fluids) 18.1.1.5 Semisynthetic Fluids 18.1.2 Methods of Application of Cutting Fluids in Conventional Machining 18.1.2.1 Cryogenic Cooling 18.1.2.2 Solid Lubricant/Coolant 18.1.2.3 High-Pressure Cooling Technique 18.1.2.4 Air/Vapour/Gas Cooling 18.1.2.5 Minimum Quantity Lubrication 18.1.2.6 Nano-Enriched Cutting Fluids 18.1.3 MQL (Minimum Quantity Lubrication) Application Technique 18.1.3.1 Internal Application 18.1.3.2 External Application 18.2 Vegetable Oil-Based Lubricants 18.2.1 Physicochemical Properties of Vegetable Oil-Based Lubricants 18.2.1.1 Viscosity 18.2.1.2 Viscosity Index 18.2.1.3 Flash Point 18.2.1.4 Pour Point 18.2.1.5 Oxidation Stability 18.3 Role of Nanoparticles in Cutting Fluids 18.3.1 Mechanism of Nanolubrication 18.3.1.1 Ball Bearing/Rolling/Sliding Effect 18.3.1.2 Polishing Mechanism 18.3.1.3 Mending Mechanism 18.3.1.4 Formation of Tribofilm 18.3.2 Preparation of Nanofluids 18.3.2.1 Two-Step Method 18.3.2.2 One-Step Method 18.3.3 Importance of Nanofluid Stability 18.4 Nanoparticle-Enriched Cutting Using MQL 18.4.1 MQL-Assisted Drilling with Nanoparticles 18.4.2 MQL-Assisted Grinding with Nanoparticles 18.4.3 MQL-Assisted Turning with Nanoparticles 18.4.4 MQL-Assisted Milling with Nanoparticles 18.5 Future Scope References Chapter 19: Nanomaterials Used for Delivery of Bioactives 19.1 Introduction 19.2 Classification of Nanocarriers 19.2.1 Liposomes 19.3 Particulate Carriers 19.3.1 Polymeric Nanoparticles 19.3.2 Solid Lipid Nanoparticles (SLNs) 19.4 Inorganic Nanocarriers 19.4.1 Silica Nanoparticles 19.4.2 Gold Nanoparticles 19.4.3 Calcium Phosphate Nanoparticles 19.5 Concluding Remarks References Chapter 20: Efficacy of Nano-phytochemicals Over Pure Phytochemicals Against Various Cancers: Current Trends and Future Prospects 20.1 Phytochemicals and Nano-phytochemicals as Potent Anticancer Agents 20.2 The Advantage of Nano-phytochemicals Over Pure Phytochemicals 20.2.1 Role of Nanoform Phytochemicals in Cancer Research 20.2.1.1 Broccoli Gold Nanoparticles 20.2.1.2 Gold Quercetin Nanoparticles 20.2.1.3 Curcumin Nanoparticles 20.2.1.4 Selaginella doederleinii Leaf Nanoparticles 20.2.1.5 Nigella sativa Nanoformulation 20.2.1.6 Honokiol Nanoparticle 20.2.1.7 Silibinin-Loaded Nanoparticle 20.2.1.8 Ursolic Acid Nanoparticle 20.2.1.9 β-Lapachone Nanoparticle 20.2.1.10 Ferulic Acid Nanoparticles 20.3 Conclusion References Index