ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Nanoelectronics for Next-Generation Integrated Circuits

دانلود کتاب نانوالکترونیک برای مدارهای مجتمع نسل بعدی

Nanoelectronics for Next-Generation Integrated Circuits

مشخصات کتاب

Nanoelectronics for Next-Generation Integrated Circuits

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9780367726522, 9781003155751 
ناشر: CRC Press 
سال نشر: 2023 
تعداد صفحات: [299] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 44 Mb 

قیمت کتاب (تومان) : 48,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 4


در صورت تبدیل فایل کتاب Nanoelectronics for Next-Generation Integrated Circuits به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب نانوالکترونیک برای مدارهای مجتمع نسل بعدی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Dedication
Table of Contents
Preface
Acknowledgments
List of Contributors
About the Editor
Chapter 1 Emerging Graphene-Based Electronics: Properties to Potentials
	1.1 Introduction
	1.2 Simulation Methodology for Self-Healing Studies
	1.3 Self-Healing of Pristine and Pre-Existing Defective Graphene Sheets
	1.4 Possible Application of the Self-Healing Phenomenon of Graphene
	1.5 Magnetic Phase Transitions
	1.6 Conclusions
	References
Chapter 2 Models for Modern Spintronics Memories with Layered Magnetic Interfaces
	2.1 Introduction
	2.2 Advanced Spintronics Memories
		2.2.1 Modern Spintronics Memories
		2.2.2 VCMA Model
		2.2.3 The Rashba SOI Model
	2.3 Magnetic Layered Interfaces for TST-MRAM
		2.3.1 HM/FM Interfacial Modulation for Strong PMA
		2.3.2 PMA in Cobalt-Dependent Multilayers
		2.3.3 PMA in FM/Co-Fe-B/MgO Structures
		2.3.4 PMA in HM/CoFeB/NM/MgO Structures
	2.4 Future Trends in Spintronics Memory
	References
Chapter 3 Evaluation of Magnetic Anisotropy via Intrinsic Spin Infusion
	3.1 Introduction
	3.2 Spin Infusion in MTJ and Effective Torque
		3.2.1 Spin Infusion in MTJ
		3.2.2 Spin Torque
			3.2.2.1 Magnetic Field Torque
			3.2.2.2 Damping Torque
			3.2.2.3 Spin-Transfer Torque
	3.3 Spin-Infusion Magnetic Switching
		3.3.1 Expansion of the Precession
		3.3.2 Cylindrical Pillar With Uniaxial Anisotropy
		3.3.3 Linearized LLG Equation
	3.4 Other Techniques in Spin-Dependent Computation
	References
Chapter 4 Quantum-Dot Cellular Automata (QCA) Nanotechnology for Next-Generation Systems
	4.1 Introduction
	4.2 Background
	4.3 Full Adder Using QCA Nanotechnology
	4.4 Comparison Analysis
	4.5 Conclusion
	References
Chapter 5 An Overview of Nanowire Field-Effect Transistors for Future Nanoscale Integrated Circuits
	5.1 ZnO/CuO/PbS NW FETs
	5.2 III-V NANOWIRE FETs
	5.3 III-V NANOWIRE TFETs
	5.4 JL NW FETs
	5.5 NW NCFETs
	5.6 Reconfigurable NW FETs
	5.7 Reliability Issues in NW FETs
	5.8 Si NW FETs
	5.9 Summary
	References
Chapter 6 Investigation of Tunnel Field-Effect Transistors (TFETs) for Label-Free Biosensing
	6.1 Introduction
	6.2 Sensitivity Analysis
	6.3 Case Study 1: Dual-Gate Source Electrode Dielectrically Modulated TFETs for Biosensing Application
	6.4 Case Study 2: Source Electrode Hetero-Material Dielectrically Modulated TFETs for Biosensing Application
	6.5 Conclusions
	References
Chapter 7 Analog and Linearity Analysis of Vertical Nanowire TFET
	7.1 Introduction
	7.2 Types of Devices
	7.3 Results and Discussion
		7.3.1 Linear Parameters Analysis
		7.3.2 Analog Parameters Analysis
	7.4 Conclusions
	References
Chapter 8 Effects of Variation in Gate Material on Enhancement Mode P-GaN AlGaN/GaN HEMTs
	8.1 Introduction
	8.2 Power Devices
	8.3 Gallium Nitride
	8.4 High Electron Mobility Transistor (HEMT)
		8.4.1 Conventional HEMT Structure
		8.4.2 Source of Two-Dimensional Electron Gas
		8.4.3 Band Diagram of a Conventional HEMT
		8.4.4 Normally-Off HEMT
	8.5 Simulation and Results
	8.6 Conclusion
	8.7 Future Scope
	References
Chapter 9 Electrical Modeling of One Selector-One Resistor (1S-1R) for Mitigating the Sneak-Path Current in a Nano-Crossbar Array
	9.1 Introduction to the RRAM Models and Their Potential Challenges
		9.1.1 RRAM Technology – Background Studies and Current Research Development
		9.1.2 RRAM Crossbar Array Formation and Sneak-Path Current
	9.2 Methods to Mitigate Sneak-Path Current in RRAM Arrays
		9.2.1 Associating a Selector Device With Memory Unit (1S-1R): A Literature Review
	9.3 Implementation of an Electrical Model of Selector Device and RRAM Device
		9.3.1 Electrical Modeling of a Selector Device
		9.3.2 Electrical Model Implementation of a Pt/Ta2O5/TaOx/Pt RRAM Device Incorporating the Current Through the Outside of the Conduction Filament (OCF)
	9.4 Integrated Modeling of the Proposed Selector Model with the RRAM Model
		9.4.1 Analysis and Results
	9.5 Formation and Sneak-Path Current Measurement of 2 × 2 CBA of 1S-1R With a Pt/Ta2O5/TaOx/TiO2/Pt Selector and Pt/Ta2O5/TaOx/Pt RRAM
	References
Chapter 10 SRAM: An Essential Part of Integrated Circuits
	10.1 Introduction
	10.2 Application Windows
		10.2.1 IoT-Enabled Wireless Sensor Networks
		10.2.2 Multimedia Applications
		10.2.3 High-Performance Processors
	10.3 Conventional SRAM Cell
		10.3.1 Device Sizing Strategy for Functional 6T SRAM Cell
		10.3.2 Memory Architecture
	10.4 Major Design Challenges of SRAM Memory for Modern Integrated Circuits
		10.4.1 Process Variation Effects
		10.4.2 Temperature Variation Effect on Read and Write Ability
		10.4.3 Read/Write Conflict and Read-Decoupled 8T SRAM Cell
		10.4.4 Read Current to Leakage Current Ratio (IRead/ILeak)
		10.4.5 Performance and Stability Trade-off
		10.4.6 Half-Select Issue
	10.5 Various Approaches to Solve the Design Issues of Conventional Bit Cells
	10.6 Low-Voltage Highly Stable 12T SRAM Cell Design for WSNs
	10.7 In-Memory Computing for the Modern AI Edge Devices and its Challenges
		10.7.1 Key Challenges of In-Memory Computing
	10.8 Conclusion
	References
Chapter 11 Implementation of 512-bit SRAM Tile Using the Lector Technique for Leakage Power Reduction
	11.1 Introduction
	11.2 Literature Review
	11.3 Static Random-Access Memory (SRAM) – Architecture and Operation
		11.3.1 SRAM Architecture
		11.3.2 Read Operation
		11.3.3 Write Operation
	11.4 The Lector Technique
		11.4.1 Applying the Lector Technique to SRAM
	11.5 Results and Discussion
	11.6 Conclusion
	Acknowledgment
	References
Chapter 12 Characterization of Stochastic Process Variability Effects on Nano-Scale Analog Circuits
	12.1 Introduction
	12.2 Background Concepts
		12.2.1 Randomness of Circuit Parameters and Circuit Performance Parameters
		12.2.2 Major Sources of Stochastic Process Variability
			12.2.2.1 Random Discrete Dopant Effect
			12.2.2.2 Line Edge/Line Width Roughness
			12.2.2.3 Oxide Thickness Variations
		12.2.3 Numerical Measures of Descriptive Statistics
	12.3 Statistical Characterization Methodology for Stochastic Process Variability
		12.3.1 Identification of the Berkeley Simulation IGFET Model (BSIM) Compact Model Parameters to Stochastic Process Variabilities
		12.3.2 Sample Design
		12.3.3 Data Collection Through Designed Experiment
		12.3.4 Sample Statistics and Measures
	12.4 Implementation of the Methodology
		12.4.1 Systematic Process Variability
		12.4.2 Stochastic Process Variability
	12.5 Application Example: Current Reference Circuit for Ultra-Low Power Analog Applications
		12.5.1 Characterization of Systematic Process Variability
		12.5.2 Characterization of Stochastic Process Variability
			12.5.2.1 Oxide Thickness Variations
			12.5.2.2 Threshold Voltage Variations
	12.6 Conclusion
	Acknowledgment
	References
Chapter 13 Versatile Single Input Single Output Filter Topology Suitable for Integrated Circuits
	13.1 Introduction
	13.2 Theoretical Details Of The Proposed Filter
		13.2.1 Working Principle of EXCCII
		13.2.2 Proposed SISO filter topology
	13.3 Filter Functionalities Derived From Proposed SISO Filter Topology
		13.3.1 First-Order AP Filter
		13.3.2 Second-Order AP Filter and Notch Filter
	13.4 Non-Ideal Analysis of the Proposed SISO Filter Topology
	13.5 Simulation Results
	13.6 Conclusion
	References
Chapter 14 Secured Integrated Circuit (IC/IP) Design Flow
	14.1 Introduction
	14.2 Discussion of Contemporary Approaches
	14.3 Structural Obfuscation of IP Cores
		14.3.1 The Basic Definition and Threat Model of Structural Obfuscation
		14.3.2 Why Performing SO during HLS is Beneficial?
		14.3.3 Description of Multi-Stage Structural Obfuscation Process (Sengupta et al., 2017)
	14.4 Functional Obfuscation of DSP IP Cores
		14.4.1 Reverse Engineering Attacks during the Various Stages of IP Core Design
		14.4.2 Attack Scenarios
		14.4.3 Functional Obfuscation Approach for DSP Cores
		14.4.4 Handling Attacks
	14.5 Hardware Watermarking
		14.5.1 Features of the Multi-Variable Watermarking Approach (Bhadauria And Sengupta, 2016) for Signature Insertion During High-Level Synthesis
		14.5.2 Signature Encoding Mechanism in Multi-Variable Watermarking Approach (Bhadauria and Sengupta, 2016)
		14.5.3 Process of Watermark Creation for an IP Core Using a Multi-Variable Signature (Bhadauria and Sengupta, 2016)
		14.5.4 Motivation for Performing Design Space Exploration of an Optimal Watermark
		14.5.5 Resolving Attacks and Ownership Problems through a Multi-Variable Watermark Approach (Bhadauria and Sengupta, 2016)
		14.5.6 Properties/Metrics of Watermark Generated through Multi-Variable Watermarking Approach (Bhadauria and Sengupta, 2016)
	14.6 Conclusion
	References
Index




نظرات کاربران