دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Ведь М.В.
سری:
ISBN (شابک) : 9786010447295
ناشر: КазНУ
سال نشر: 2020
تعداد صفحات: 184
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 7 مگابایت
در صورت تبدیل فایل کتاب Nanocomposite electrolytic coatings with defined functional properties: monograph به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پوششهای الکترولیتی نانوکامپوزیت با ویژگیهای عملکردی مشخص: تکنگاری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
فن آوری های الکتروشیمیایی مدرن برای عملیات سطحی آلیاژهای تیتانیوم برای ایجاد مواد محافظ، ضد اصطکاک، دی الکتریک و کاتالیزوری فعال در نظر گرفته شده است. مبانی فیزیکوشیمیایی فرآیندهای تشکیل پلاسما-الکترولیتی پوششهای الکترولیتی تبدیلی و کامپوزیت برجسته شدهاند. مراحل جداگانه واکنش های الکترود، قانونمندی های تأثیر اجزای الکترولیت و پارامترهای الکترولیز بر روی ترکیب، ساختار و مورفولوژی مواد سنتز شده به طور مفصل مورد بررسی قرار می گیرند. این مونوگراف نتایج پروژه "توسعه فناوری نانو برای سنتز پوشش های گالوانیکی کاربردی برای تجهیزات الکتریکی" را خلاصه می کند. این مونوگراف برای متخصصان در زمینه فناوری شیمیایی و همچنین معلمان، دانشجویان تحصیلات تکمیلی و دانشجویان موسسات آموزش عالی طراحی شده است.
Modern electrochemical technologies for surface treatment of titanium alloys to create protective, antifriction, dielectric and catalytically active materials are considered. The physicochemical fundamentals of the processes of plasma-electrolytic formation of conversion and composite electrolytic coatings are highlighted. Separate stages of electrode reactions, regularities of the influence of electrolyte components and electrolysis parameters on the composition, structure and morphology of synthesized materials are examined in detail. The monograph summarizes the results of the project "Development of nanotechnology for the synthesis of functional galvanic coatings for electrical equipment". The monograph is designed for specialists in the field of chemical technology, as well as teachers, graduate students and students of higher educational institutions.
CONTENT INTRODUCTION Chapter 1 SYNTHESIS AND FUNCTIONAL PROPERTIES OF COATINGS FOR TITANIUM ALLOYS 1.1 Current Methods of Producing Functional Coating on Titanium Alloys 1.2 Synthesis of doped coatings in micro-arc mode Chapter 2 FORMATION OF COATINGS IN DIPHOSPHATE SOLUTIONS 2.1 Anodic behavior of titanium alloys in diphosphate solutions Table 2.1 The chemical composition of titanium alloys, mas.% Table 2.2 Composition of solutions Table 2.3 Reaction speed constants ks (cm/s) of the anodeoxidation of titanium alloys in solutions of 1M Na2SO4 and diphosphateat various s (V / s) 2.2 Plasma electrolytic oxidation Table 2.4 The composition of solutions for processing titanium alloys Table 2.5 The influence of the concentration of diphosphate on indicators of PEO of titanium alloys (current density 2 A/dm2, time 30 minutes) 2.3 Functional properties of metal oxide systems Ti | TinOm Table 2.6 the Resistance of oxide coatings to abrasive wear. Electrolyte 1 M K4P2O7, PEO time 30 minutes Table 2.7 Corrosion potential of PEO coatings TinOm Table 2.8 Indicators of the corrosion rate of oxide systems Chapter 3 ELECTROCHEMICAL SYNTHESIS of MnxOy-CONTAINING COATINGS 3.1 Anode behavior of titanium alloys in diphosphate solutions of manganese (II) Table 3.1 the composition of the electrolytes, mol / dm3 Table 3.2 Electrical resistivity and thermal stability of oxides [133, 134] 3.2 Patterns of formation of TinOm MnxOy coatings in a plasma-electrolytic mode Table 3.3 the composition of the electrolytes of PEO Table 3.4 the parameters of the coating process Table 3.5 Characteristics of titanium and manganese oxides Table 3.6 Phase composition of coatings Table 3.7 Field strengths in films in the pre-spark region Table 3.8 Field strength in oxide coatings at the end of the PEO process in various electrolytes at j = 5 A / dm^2 3.3 Electrophoretic synthesis of TinOm MnxOy coatings Table 3.9 Characteristics of the PEO process in manganese-containing electrolytes at c1 (K4P2O7) = 0.1 mol / dm3 3.4 Properties of Ti metal oxide systems | TinOm MnxOy Table 3.10 Characteristics and corrosion resistance of PEO coatings in 0.1 mol / dm^3 NaCl Table 3.11 Corrosion resistance of PEO coatings in a model medium 0.1 mol/dm3 H2SO4 Table 3.12 Resistance of oxide coatings to abrasive wear Phase composition of the coating Chapter 4 NANOCRYSTALINE COATINGS WITH MIXED TITANIUM OXIDES AND d-METALS 4.1 Metal oxides of the iron subgroup (Co, Ni, Fe) Table 4.1 Composition of electrolytes and synthesis parameters oxide systems Table 4.2 Electrical resistivity and thermal resistance of oxides [133, 134] Table 4.3 Elemental composition of mixed oxide coatings on OT4-1 alloy 4.2 Rare metal oxides (Mo, W, V, Zr) Table 4.4 Electrolyte composition and PEO mode Table 4.5 Specific electrical resistanceand thermal stability of oxides [133, 134] 4.3 Functional properties of mixed titanium and transition metal oxides Table 4.6 Corrosion indicators of systems Ti│TinOm ∙ MxOy in solution 0,1 M NaCl Table 4.7 Corrosion indicators of samples with mixed oxide coatings Table 4.8 Indicators of corrosion of samples with coatings TinOm│oxides of rare metals in 0.1 M NaCl solution Table 4.9 Coating characteristics TinOm CoxOy 4.4 Catalytic properties of mixed oxide coatings Table 4.10 Kinetic parameters of the reaction electrolytic oxygen evolution Table 4.11 Characteristics of mixed oxide coatings Table 4.12 Characteristics of photocatalytic activity oxide systems obtained at j = 1.5 A / dm2 Chapter 5 PHYSICO-CHEMICAL BASES OF OBTAINING NANO-CEС 5.1. Sedimentation method of preparing shungite concentrate for deposition of nano-CEC chromium-schungite Table 5.1 Chemical composition of shungite of the Koksu deposit according to TU-7000 RK 3873 5112-003-2002 Table 5.2 Chemical composition of schungite of Zazhoginsky and Koksu deposits Improvements and additions consisted in the development, manufacture and addition: the cover of the bath of heat and electrical insulating material bearing the cathode K and two anodic A copper terminals on the outer surface, passing from the inside t... Until now, the problem of the possibility of obtaining CEC with these or those dispersed phases is based on the unpromising and laborious method of "trial and error". Therefore, we have developed a criterion for predicting the possibility of CEC forma... Table 5.3 Meaning of EN IP and ECVS of elements’s atoms 5.2 Results of the investigation of nano-CEC chromium-schungite Table 5.4 Composition of electrolytes, (g / dm3) Table 5.5 Average metric characteristics of schungite particles Table 5.6 The current output and microhardness of chromium-carbon CEC at constant and variable ultrasonic effect 5.3 Formation of CEC and nano-CEC chromium – carbon Table 5.7 Carbon content in nano-CEP depending on ultrasound exposure and the sequence of their production Table 5.8 Results of the study of carbon content in ECC and nano-CEC obtained at the concentration of carbon in the electrolyte 5 kg/m3 and different current densities Table 5.9 Results of the study of carbon content in CEC and nano-CEC obtained at the concentration of carbon in the electrolyte 10 kg/m3 and different current densities Table 5.10 Results of the study of carbon content in CEC and nano-CEC obtained at the concentration of carbon in the electrolyte 15 kg/m3 and different current densities 5.4 Ultrasonic activation and stabilization of the suspension electrolyte Chapter 6 STUDY OF COMPOSITE COATINGS PROPERTIES 6.1 Adhesion and microhardness of coatings Table 6.1 Results of testing nano – CEC chromium – carbon for adhesion on steel 12ХНВА according to GOST 10510 – 80 6.2 Investigation of corrosion resistance Table 6.2 Conditions and results of tests for corrosion resistance of CEC chrome-shungite obtained at an electrodeposition temperature of 323 K for 1 hour Table 6.3 Conditions and results of tests for corrosion resistance of CEC chrome-shungite obtained at an electrodeposition temperature of 323 K for 2 hours Table 6.4 Test results for corrosion resistance of nano-CEС chromium-soot obtained at different electrodeposition temperatures for 1 hour 6.3. Results of laboratory-industrial tests of nano-CEC Table 6.5 Results of comparative tests of vacuum ceramic disc filter spools 6.4 Possible areas of practical use of composite coatings There is no branch of technology and production that would not need effective protection against wear and corrosion destruction. The almost unlimited need of all branches of mechanical engineering, energy, mining and processing industries, oil, chemic... Table 6.6 Potential consumers of CEC and nano-CEC Table 6.7 Demand in physical and financial terms CONCLUSION References