دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Ravindra Pratap Singh, Kingsley Eghonghon Ukhurebor, Jay Singh, Charles Oluwaseun Adetunji, Kshitij RB Singh سری: ISBN (شابک) : 303116105X, 9783031161056 ناشر: Springer سال نشر: 2022 تعداد صفحات: 468 [469] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 12 Mb
در صورت تبدیل فایل کتاب Nanobiosensors for Environmental Monitoring: Fundamentals and Application به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نانوبیوسنسورها برای پایش محیطی: مبانی و کاربرد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مستلزم اطلاعات دقیق در مورد استفاده از نانوبیوسنسور به عنوان یک فناوری موثر برای تشخیص، نظارت و مدیریت موثر آلودگیهای محیطی برای اطمینان از پایداری آن و رفاه بشر است. سطح بالاتر فعالیت انسان زایی به دلیل سطح بالاتر بیگانه زیستی و مواد سمی که می تواند اکوسیستم عادی را مختل کند به عنوان یک تهدید برای موجودیت نوع بشر شناخته شده است. این امر سازمان های متعددی را در سطح محلی و بین المللی برانگیخته است که می توانند نقش مهمی در کاهش آلودگی زیست محیطی ایفا کنند. استفاده از نانوبیوسنسور به عنوان یک تکنیک پایدار شناخته شده است که می تواند برای اطمینان از تشخیص و شناسایی مناسب چندین آلاینده محیطی استفاده شود. کاربردهای احتمالی نانومواد یک دامنه نوآورانه به نام ماشینهای حسگر زیستی مبتنی بر نانومواد به عنوان یکی از زیرشاخههای نهایی نانوتکنولوژی ایجاد کرد. استفاده از ماشین آلات حسگرهای زیستی مبتنی بر نانومواد و پیشرفتهای آنها میتواند در سطح جهانی برای حل چالشهای متعدد بخشهای زیستمحیطی برای تضمین کیفیت و ایمنی محیط به کار گرفته شود. این کتاب مجموعه ای عالی از بررسی های مبتنی بر تحقیقات و پیشرفت های معاصر در مورد استفاده از نانومواد و کاربردها در پایش زیست محیطی همراه با چشم انداز آنها خواهد بود. این کتاب تلاش میکند تا ایدهای جامع از مفاهیم نانومواد برای کاربردهای نانوبیوسنسورها در زمینههای زیستمحیطی ارائه دهد تا به دانشآموزان، محققان، و متخصصان/متخصصان کمک کند تا اهمیت نانومواد را در حوزه زیستمحیطی تشخیص دهند. این کتاب همچنین به درک و رسیدگی به عوارض بخش های زیست محیطی از طریق استفاده و کاربردهای نانومواد کمک می کند. از این رو، این کتاب به عنوان یک کتاب درسی عمل می کند و به دانش آموزان، متخصصان / پزشکان، دانشمندان، محققان و دانشگاهیان در حوزه های مختلف تحقیقاتی کمک می کند.
This book entails detailed information on the utilization of nanobiosensor as an effective technology for the effective detection, monitoring, and management of environmental contaminations to ensure its sustainability and humanity\'s well-being. The higher level of anthropogenic action has been identified as a threat to humankind\'s existence due to the higher level of xenobiotic and toxic substances that could interrupt the normal ecosystem. This has prompted numerous agencies both locally and internationally that could play a significant role in environmental pollution mitigation. The application of nanobiosensor has been identified as a sustainable technique that could be applied to ensure proper detection and identification of several environmental contaminants. Nanomaterial’s possible applications created an innovative domain called nanomaterials based biosensors machinery as one of nanotechnology\'s ultimate sub-divisions. The application of nanomaterials based biosensors machinery and their advancements could be applied globally to resolve numerous environmental sectors\' challenges to guarantee the environment\'s quality and safety. The book will be an excellent collection of reviews based on contemporary research and developments on nanomaterials utilization and applications in environmental monitoring along with their prospects. The book will attempt to give a comprehensive idea of nanomaterial concepts for nanobiosensors applications in an environmental context to help students, researchers, and professionals/practitioners recognize nanomaterials\' significance in the environmental domain. The book will also help understand and address the environmental sectors\' complications via nanomaterials\' utilization and applications. Hence, this book will serve as a textbook and will help students, professionals/practitioners, scientists, researchers, and academicians in various research domains.
Preface Acknowledgments Contents Editors and Contributors 1 Introduction to Nanobiosensors 1.1 Introduction 1.2 Types of Nanobiosensors 1.3 Properties and Fabrication of Nanobiosensors 1.4 Potentialities of Nanobiosensors in the Environment Domain 1.5 Miscellaneous Applications of Nanobiosensors 1.5.1 Agricultural 1.5.2 Biomedical 1.5.3 Food Safety and Monitoring Applications 1.6 Recent Trends and Limitations 1.7 Conclusion References 2 Classification, Properties, and Fabrication Techniques of Nanobiosensors 2.1 Introduction 2.2 Classification of Nanobiosensors 2.2.1 Classification Based on Transducer 2.2.2 Based on Bioreceptors 2.3 Properties of Nanobiosensors 2.4 Fabrication of Nanobiosensors 2.4.1 Physical Fabrication 2.4.2 Chemical Fabrication 2.4.3 Surface Modifications 2.5 Challenges and Future Perspectives 2.6 Conclusion References 3 Nanobiosensors’ Potentialities for Environmental Monitoring 3.1 Introduction 3.2 Types of Nanobiosensors 3.2.1 NPs-Based Biosensors (NPBS) 3.2.2 NTs-Based Sensors (NTBS) 3.2.3 NWs-Based Sensors (NWBSs) 3.2.4 QDs-Based Sensors (QDNSs) 3.3 Nanobiosensors for Detection of Environmental Pathogens 3.3.1 Viruses 3.3.2 Fungus 3.3.3 Bacteria 3.4 Nanobiosensors for the Detection of Heavy Metals 3.5 Nanobiosensor for Detection of Soil and Air Contaminants 3.5.1 Soil Contaminants 3.5.2 Air Contaminants 3.6 Conclusion and Prospects References 4 Utilization of Nanobiosensors for Wastewater Management 4.1 Introduction 4.2 Nanobiosensors 4.3 Nanomaterials for Wastewater Treatment 4.4 Application and Importance of Nanobiosensors for Wastewater Treatment 4.5 Conclusion References 5 Nanobiosensors for Environmental Risk Assessment and Management 5.1 Introduction 5.2 Environmental Risk Assessment 5.3 Nanobiosensors for Environmental Risk Assesment and Management 5.3.1 Hazard Identification 5.3.2 Risk Assessment and Evaluation 5.3.3 Risk Management and Communication 5.3.4 Monitoring and Feedback 5.4 Conclusion 5.5 Future Remarks References 6 Challenges and Scope in Nanobiosensors Utilization for Environmental Monitoring 6.1 Introduction 6.2 Importance of Nanobiosensors for Environmental Monitoring 6.3 Scope of Nanobiosensor in Environmental Monitoring 6.3.1 Detection of Heavy Metals 6.3.2 Detection of Microorganism 6.4 Nanobiosensors in Health Care 6.4.1 Nanobiosensors for Detection of Food- and Water-Borne Microorganisms 6.4.2 Nanobiosensors for Detection of Microbial Toxins 6.4.3 Nanobiosensors for Detection of Viruses 6.4.4 Nanobiosensors for Detection of Pesticide 6.5 Nanobiosensors for Environment Safety and Security 6.6 Conclusion References 7 Role and Significance of Nanobiosensors for Environmental Remediation 7.1 Introduction 7.2 Role and Significance of Nanobiosensors for Environmental Monitoring 7.3 Nanobiosensors for Environmental Remediation 7.3.1 Fertilizer Residues 7.3.2 Pesticide Detection 7.3.3 Heavy Metal Detection 7.3.4 Detection of Escherichia Coli 7.4 Conclusion and Outlook References 8 Bioluminescence Sensors for Environmental Monitoring 8.1 Introduction 8.1.1 Proper Organism—Application and Choice 8.1.2 Medicinal Plant—Cultivation Environment Monitoring 8.1.3 Infectious Disease Detection—Biosensor 8.1.4 Bacteria as Biosensors 8.2 The Principle of Bacterial Bioluminescent Biosensor 8.3 Aptamers 8.4 Heavy Metals 8.4.1 Arsenic 8.4.2 Lead 8.4.3 Silver (Ag) 8.5 Soil Contaminants—Aptamer 8.5.1 Using Aptamer-Based Biosensors for Monitoring Lead in Soil 8.5.2 Agricultural Toxins Detection Present in Soil 8.6 Aptamers for Monitoring Air Quality 8.7 Bacterial Detection Aptamer-Based Biosensors 8.7.1 Listeria Monocytogenes 8.7.2 Vibrio Species 8.8 Applications of Bioluminescent Biosensors 8.8.1 Detection of Environmental Contaminants 8.8.2 Applications in the Food Industry 8.8.3 Bio Drug Delivery Systems 8.9 Perspectives and Recommendations 8.10 Conclusion References 9 Microbial and Plant Cell Biosensors for Environmental Monitoring 9.1 Introduction 9.2 Types of Biosensors 9.2.1 Gold Nanorods (GNRs-DNA) DNA Biosensors 9.2.2 Enzyme-Linked Immunosorbent Assay (ELISA) 9.2.3 Quartz Crystal Microbalance (QCM) Biosensor 9.2.4 Microbial Biosensors 9.3 The Environmental Application of Genetic/Protein Engineering and Synthetic Biology in the Development of Microbial Biosensor 9.4 Environmental Application of Biosensor 9.5 The Application of Plant Cell Biosensors for Environmental Monitoring 9.6 Application of Plant as a Biosensor of Pollutants in the Environment and Monitoring of Pollutants 9.7 Current Research Trends, Future Challenges, and Limitations of Biosensor Technology 9.8 Conclusion and Future Recommendation References 10 Biomimetic Material-Based Biosensor for Environmental Monitoring 10.1 Introduction 10.2 Biomimetic 10.3 Biomimetic Nanobiosensors 10.4 Pathogen Microorganisms 10.5 Butterfly Wings 10.6 Bioelectronic Nose 10.7 Nanoenzymes 10.8 Conclusion References 11 Chemiluminescence Sensors for Environmental Monitoring 11.1 Introduction 11.2 Instrumentation for CL Sensors 11.2.1 Light-Detection 11.2.2 Flow Injection Technique 11.3 Applications 11.3.1 Determination of the Analytes in the Air/Vapor 11.3.2 Chemiluminescence-Based Sensors on Metal Ions and Non-metal Ions 11.3.3 Determination of the Analytes in the Liquid 11.4 Chemiluminescence for Reactive-Oxygen Species Sensing and Imaging Analysis 11.5 Conclusions and Prospects References 12 Nanobiosensor for Mycotoxin Detection in Foodstuff 12.1 Introduction 12.2 Categories of Mycotoxins 12.2.1 Fumonisins 12.2.2 Aflatoxins 12.2.3 Ochratoxins 12.2.4 Trichothecenes 12.2.5 Zearalenone 12.3 Orthodox Techniques for Mycotoxin Identification 12.3.1 Chromatographic-Based Methods 12.3.2 Immunochemical-Based Methods 12.3.3 Microarrays 12.4 Biosensors for the Recognition of Mycotoxins 12.5 Principle of Operational Manual of Nanomaterial in Nanobiosensors 12.6 Versatility of Nanomaterials in Mycotoxin Detection 12.7 Sensing Performance of Nanobiosensors for Mycotoxin Detection 12.8 Nanobiosensors for the Recognition of Mycotoxins 12.9 Benefits and Challenges Associated with Detection of Mycotoxin by Using Nanobiosensors 12.10 Conclusion and Future Aspects References 13 Current Existing Techniques for Environmental Monitoring 13.1 Introduction 13.2 Carbon Nanotubes (CNTs) 13.3 Functionalization 13.4 CNTs-Based Biosensors for HMI Sensing 13.4.1 Optical Biosensors 13.4.2 Field-Effect Transistor (FET) Biosensors 13.4.3 Electrochemical Biosensors 13.5 Applications of CNT-Based Sensors in Gas Sensing 13.5.1 CNT-Based Gas Sensors 13.5.2 Photosensors for Gas Sensing 13.5.3 FET Sensors for Gas Sensing 13.5.4 Pressure Sensors for Gas Sensing 13.6 Conclusion References 14 Molecularly Imprinted Polymers-Based Nanobiosensors for Environmental Monitoring and Analysis 14.1 Introduction 14.2 Molecularly Imprinted Polymers 14.3 Application of MIP-Based Nanobiosensors for Environmental Monitoring and Analysis 14.3.1 Pesticide Detection 14.3.2 Pharmaceutical Product Detection 14.3.3 Heavy Metals Detection 14.4 Conclusion and Future Perspective References 15 Plasmonic Nanoparticles for Naked-Eye Detection of Environmental Pollutants 15.1 Introduction 15.2 Colorimetry-Based Plasmonic Nanoparticles 15.3 Plasmonic Nanoparticles 15.4 Noble Metal Nanomaterials 15.5 Plasmonic Nanoparticle-Based Naked-Eye Colorimetry Method 15.6 The Applications of the Plasmonic Nanoparticles in the Environmental Pollutant’s Detection 15.6.1 Toxic Heavy Metal 15.6.2 Organo-Phosphate Pesticides 15.6.3 Aromatic Compounds 15.6.4 Other Pollutant Compounds 15.7 Conclusions and Future Outlooks References 16 Utility of Nano Biosensors for Heavy Metal Contamination Detection in the Environment 16.1 Introduction 16.2 Statistical Prevalence and Epidemiology of Heavy Metal Ion Contamination 16.3 Traditional Approaches for Arsenic (As) Monitoring in Water 16.3.1 Standard UV-Visible Technique 16.3.2 Mass Spectroscopic Techniques 16.3.3 Chromatographic Techniques 16.4 Current Approaches for Monitoring of Arsenic 16.4.1 Microbial Fuel Cell (MFC) Based Biosensor 16.4.2 Transducer Based Biosensors for Heavy Metal Detection 16.5 Commercially Available Sensors for Arsenic Detection 16.6 Conclusion and Future Prospect References 17 Nanobiosensors and Industrial Wastewater Treatments 17.1 Introduction 17.2 Nanomaterials for Wastewater Treatment 17.2.1 Nano Adsorption and Remediation 17.2.2 Membrane Filtration 17.2.3 Nanobiosensing and Monitoring 17.3 Industrial Wastewater Treatment 17.3.1 Based on Bio-recognition Elements 17.3.2 Based on the Type of Nanomaterial 17.3.3 Applications of Nanobiosensors 17.3.4 Conclusion 17.3.5 Future Aspects References 18 Nanobiosensors Potentialities for Monitoring SARS-CoV-2 in the Environment 18.1 Introduction 18.2 Origin and Structure of SARS-CoV-2 18.2.1 Biological Properties of the SARS-CoV-2 18.2.2 Climate and COVID-19 18.3 Current Applications in Nanotechnology for Combat COVID-19 18.3.1 Biosensors for Detection of Coronaviruses 18.3.2 Electrochemical Nanobiosensors 18.3.3 SARS-CoV-2 Electrochemical Nanobiosensors Based on Gold Nanostructures 18.3.4 SARS-CoV-2 Electrochemical Nano Biosensors Based on Carbon and Graphene Materials 18.3.5 Optical Nanobiosensors 18.3.6 Magneto-Optical Nanobiosensors 18.3.7 Piezoelectric Nanobiosensors 18.3.8 Wearable and Smart Nanobiosensors 18.3.9 Field-Effect Transistor 18.4 Challenges and Prospects 18.5 Conclusion References 19 Recent Trends in Rapid Environmental Monitoring of Toxicants Using Nanobiosensors 19.1 Introduction 19.2 Noble Metal Nanoparticles in Biosensors 19.3 Nanosensors and Nanobiosensors for Monitoring the Environmental Pollutants 19.3.1 Nanobiosensors for Assessment of Harvest Index 19.3.2 Nanobiosensors for Monitoring of Agriculture Pathogen 19.3.3 Lipid Membrane-Based Nanosensors for Environmental Monitoring 19.3.4 DNA-Nanosensors for Environmental Monitoring 19.3.5 Optical Biosensors for Environmental Applications 19.4 Recent Progress in Biosensors for Environmental Monitoring 19.5 Biosensors a Promising Future in Measurements 19.6 Future Perspectives 19.7 Conclusion References 20 Ecotoxicology of Nanomaterials: A Sensor Perspective 20.1 Introduction 20.2 Types of NMs 20.2.1 Metal-Based NMs 20.2.2 Lipid-Based NMs 20.2.3 Polymer-Based NMs 20.2.4 Carbon-Based NMs 20.2.5 Nanocomposites (NCs) 20.3 Environmental Occurrence of NMs 20.3.1 Nanomedicine 20.3.2 Care Products 20.3.3 Environmental Monitoring 20.3.4 Agriculture 20.3.5 Antimicrobial Nanopackaging Material 20.3.6 Textiles 20.3.7 Sports Equipment 20.4 NMs in the Global Market 20.5 Behaviors of NMs in the Environment 20.5.1 In the Aquatic Environment 20.5.2 Biophysicochemical Behavior and Fate of NMs in Soil 20.5.3 Biophysicochemical Behavior and Fate of NMs in Air, Human, and Animals 20.6 Conclusions References 21 Legal Implications of Nanobiosensors Concerning Environmental Monitoring 21.1 Introduction 21.2 The Concept of NBS in Environmental Monitoring 21.3 NBS for Environmental Monitoring Complimenting Some International Environmental Legal Framework 21.4 Legal Implications and Challenges Concerning NBS for Environmental Monitoring 21.4.1 The European Union Directives of 2008/98/EC with Regard to Waste 21.4.2 The Stockholm Convention on Persistence Organic Pollutants 21.4.3 The Basel Convention 21.4.4 Bamako Convention 21.5 Conclusion and Recommendations References