دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Yashwant Pathak. Malay K. Das
سری:
ISBN (شابک) : 9789811562549, 9789811562556
ناشر:
سال نشر: 2021
تعداد صفحات: 634
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 10 مگابایت
در صورت تبدیل فایل کتاب Nano Medicine and Nano Safety: Recent Trends and Clinical Evidences به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نانو پزشکی و ایمنی نانو: روندهای اخیر و شواهد بالینی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Contents Contributors Part I: Applications of Nano Biotechnology in the Development of Nano Medicine 1: Nanobiotechnology and Its Application in Nanomedicine: An Overview 1.1 Introduction 1.1.1 Advantages of Nanomedicine 1.2 Application of Nanobiotechnology in Nano Medicine 1.2.1 Diagnosis 1.2.1.1 Nanobiosensors 1.2.1.2 Biochips/Microarray 1.2.1.3 Nanopore Technology 1.2.1.4 Biobarcode 1.2.1.5 Nanoparticle Based Imaging and Labeling 1.2.1.6 Nanoproteomic Based Diagnosis 1.2.2 Therapeutics 1.2.2.1 Polymeric Nanoformulation 1.2.2.2 Liposomes 1.2.2.3 Nanogels 1.2.2.4 siRNA 1.2.2.5 Dendrimers 1.2.2.6 Gene Drug Delivery 1.2.2.7 Other Nanoformulations 1.2.2.8 Nano Surgery 1.2.2.9 Medical Implants 1.2.3 Clinical Advances and Patents 1.3 Challenges for Nanobiotechnology in Nanomedicine 1.4 Conclusion and Future Aspects References 2: Nanobiotechnology for Therapeutic Targeting of Circulating Tumor Cells in the Blood 2.1 Introduction 2.2 Biology of Circulating Tumor Cells 2.2.1 Survival of CTCs in Blood Circulation 2.2.2 Entry of CTCs in the Bloodstream 2.2.3 CTC Single Cell Vs. CTC Clusters 2.2.4 Epithelial Plasticity of CTCs 2.2.5 CTC Response to Reactive Oxygen Species (ROS) 2.2.6 CTC Interaction with Platelets 2.2.7 CTC Interactions with Immune Cells 2.3 Advanced Nanobiotechnology for Therapeutic Targeting of CTCs 2.3.1 Effect of Nanoparticle Morphology on Their Fate in Blood Circulation 2.3.2 RBC-Based Nanoplatform for CTC Targeting 2.3.3 Neutrophil-Based Nanoplatform for CTC Targeting 2.3.4 Targeting CTCs with Platelet Membrane-Functionalized Particles 2.3.5 Liposomes 2.3.6 DNA-Based Nanodevices 2.3.7 Dendrimers 2.3.8 Mesoporous Silica Nanoparticles (MSN) 2.3.9 Polymeric Micelles 2.4 Conclusion References 3: Application of Nanobiotechnology in Clinical Diagnosis 3.1 Introduction 3.1.1 Classification of Nanoparticles 3.1.2 Properties of Quantum Dots 3.1.2.1 Enhancement of Band Gap 3.1.2.2 Blue Shift 3.1.2.3 Large Surface to Volume Ratio 3.1.2.4 Intense Photoluminescence 3.1.3 Nanobiosensors 3.1.3.1 Bimolecular Transduction 3.1.3.2 Label-Based Detection 3.1.3.3 Label-Free Detection Methods Electrical Detection Optical Detection 3.2 Medical Applications of Nanostructures 3.2.1 Nanostructured Surfaces 3.2.2 Nanoscale for Molecular Identification 3.2.3 Gold Nanoparticles for Diagnostics 3.2.4 Quantum Dot towards Application in Cancer Cell 3.2.5 Nanotechnology-Based Biochips 3.2.6 Infectious Diseases with Nanodiagnostics 3.2.7 Nanoparticle Hyperthermia as Clinical Cancer Therapy 3.3 The Next Prospects 3.4 Challenges with the Use of Nanostructures 3.5 Conclusion References 4: Anti-diabetic Nano-formulation from Herbal Source 4.1 Introduction 4.2 Anti-diabetic Drugs from Herbal Sources 4.2.1 Anti-diabetic Herbal Sources Indigenous to India and Special Emphasis on Northeast India 4.2.2 Anti-diabetic Herbal Sources from Rest of the World 4.3 Some Prominent Isolated Compounds Extracted from Herbal Sources with Their Pharmacological Targets for Mitigating Diabetes 4.3.1 Regulation of Insulin Secretion By Herbal Drugs 4.3.1.1 Dandelion (Taraxacum officinale) 4.3.1.2 Vitis vinifera L 4.3.1.3 Cuminaldehyde, Cuminol and Cuminol 4.3.1.4 Resveratrol 4.3.1.5 Berberine 4.3.1.6 Gymnemic Acid 4.3.2 Antioxidant Perspectives of Herbal Drugs in Oxidative Stress 4.3.2.1 Swertiamarin 4.3.2.2 Corn Silk (Zea mays L.) 4.3.2.3 Silybin 4.3.3 Herbal Drugs-Assisted Alleviation of Peripheral Insulin Resistance 4.3.3.1 Botanical Mixture of American Ginseng, Fenugreek Seed, Mulberry Leaf Extracts 4.3.3.2 Emodin 4.3.4 Inhibition of Glucose Absorption By Herbal Drugs 4.3.4.1 Nigella Sativa 4.3.4.2 Feruloylated Arabinoxylan Mono- and Oligosaccharides (FAXmo) 4.3.4.3 Tomatoside A 4.3.4.4 Stevioside 4.3.4.5 Quercetin 4.3.4.6 Myricitrin 4.3.5 Diverse Pharmacological Role of Herbal Drugs in Alleviating Diabetes Mellitus 4.3.5.1 Compound K 4.3.5.2 Mediterranean Diet 4.3.5.3 Vitamin D 4.3.5.4 Curcumin 4.3.5.5 Capsicum Oleoresin 4.3.5.6 Naringenin 4.3.5.7 Baicalin 4.3.5.8 Scutellarin 4.4 Application of Nanotechnology for Anti-diabetic Herbal Formulation 4.4.1 Material-Based Nanoformulation 4.4.1.1 Nano-carriers 4.4.1.2 Polymeric Nanoparticles 4.4.1.3 Solid Lipid Nanoparticles 4.4.1.4 Liposomes 4.4.1.5 Microemulsion and Nanoemulsion 4.5 Challenges in Developing Herbal-Based Nanoformulation 4.6 Conclusion References 5: Nanomaterials for Alternative Antibiotic Therapy 5.1 Introduction 5.2 Nanoparticles as Antimicrobials 5.2.1 Inorganic Nanoparticles 5.2.2 Organic Nanoparticles 5.2.3 Antibacterial Properties and Mechanism of Action of Nanoparticles 5.2.4 Recent Studies on Nanoparticles Against Microorganism 5.3 Conclusion References Part II: Nano Medicine: Concept, Development, Clinical Applications and Evidences 6: Nanomedicines and Nanodrug Delivery Systems: Trends and Perspectives 6.1 Introduction 6.2 Types of Nanoparticles with Potential Benefit to Targeted Drug Delivery 6.3 Nanomedicines for Improvement of Drug Delivery 6.3.1 Anticancer Nanomedicines 6.3.2 Antiretroviral Nanomedicines 6.3.3 Antidiabetic Nanomedicines 6.3.4 Antimalarial Nanomedicines 6.3.5 Anti-Inflammatory Nanomedicines 6.3.6 Antimicrobial Nanomedicines 6.3.7 Nanomedicines for Neurodegenerative Diseases 6.3.8 Nanomedicines for Gene Therapy 6.4 Recent Patents Issued in the Area of Nanomedicine Research 6.5 Clinical Evidence of Nanomedicines (Marketed Nanoformulations) 6.6 Promises and Challenges of Nanomedicines for Drug Delivery 6.7 Conclusion and Future Perspectives References 7: Nanomedicines in Drug Delivery from Synthetic and Natural Sources to Their Clinical Applications 7.1 Introduction 7.2 Synthetic Biopolymer-Based Nanomedicines and Drug Delivery 7.3 Natural Biopolymer-Based Nanomedicine and Drug Delivery 7.4 Natural Product-Based Nanomedicine and Drug Delivery 7.5 Clinical Application of Nanomedicines 7.6 Conclusion and Future Perspectives References 8: Transdermal Nanomedicines for Reduction of Dose and Site-Specific Drug Delivery 8.1 Introduction 8.1.1 Transdermal Drug Delivery 8.1.2 Skin Physiology 8.1.2.1 Structure of the Skin 8.1.2.2 Epidermis 8.1.2.3 Dermis 8.1.2.4 Hypodermis 8.1.2.5 Reservoir Capacity of Skin 8.1.2.6 Metabolic Activity of Skin 8.2 Mechanism of Skin Permeation 8.2.1 Skin Pharmacokinetics 8.2.1.1 Mechanism of Rate-Controlled Transdermal Drug Delivery 8.2.2 Dose Reduction Through TDDS 8.3 Nanomedicine 8.3.1 Therapeutic Purpose of Nanomedicine 8.4 Nanomedicine in TDDS 8.4.1 Transethosomes 8.4.2 Nanoethosomes 8.4.3 Aspasomes 8.5 Different Formulations of Transdermal Drug Delivery 8.5.1 Advancement of TDDS 8.5.2 Passive Delivery of Protein Drugs 8.5.3 Iontophoresis 8.5.4 Electroporation 8.5.5 Cavitational Ultrasound 8.5.6 Microneedles 8.5.7 Thermal Ablation 8.5.8 Carrier Supportive Adjuvants 8.5.9 Peptide Chain-Mediated Delivery 8.5.9.1 Cell-Penetrating Peptides 8.5.9.2 Skin-Penetrating Peptides 8.5.10 Antimicrobial Peptide Magainin 8.5.11 Different Formulations in Transdermal Nanomedicine 8.6 Drug Targeting and its Importance 8.7 Nanoformulation-Mediated Site-Specific Delivery of Drug Through Transdermal Drug Delivery 8.7.1 Physical Techniques 8.8 Nonphysical Techniques 8.8.1 Site-Specific Delivery of Drug for Cutaneous Disorder 8.8.1.1 Melanoma 8.8.1.2 Psoriasis 8.8.1.3 Alopecia 8.8.1.4 Wound Healing 8.8.2 Treatment of Non-Cutaneous Disorders 8.8.2.1 Rheumatoid Arthritis 8.8.2.2 Parkinson 8.8.2.3 Diabetes Mellitus 8.8.3 Advanced Cell Targeting by CPPs (Cell Penetrating Peptides) 8.9 Conclusion and Future Perspectives References 9: Multifunctional Mesoporous Silica Nanoparticles for Biomedical Applications 9.1 Introduction 9.2 Potential Biomedical Application of MSNs 9.2.1 Multifunctional MSN for Delivery of Therapeutic Agents 9.2.2 Biomedical Imaging with Multifunctional MSNs 9.2.2.1 Optical Imaging with MSNs 9.2.2.2 Positron Emission Tomography (PET) 9.2.2.3 Magnetic Resonance Imaging (MRI) 9.2.3 Tissue Regeneration and Wound Healing 9.2.4 Antimicrobial Applications 9.3 Conclusion and Future Prospects References 10: Advances in Pulmonary Nanomedicine for Therapeutic Management of Respiratory Diseases 10.1 Introduction to Nanomedicine 10.2 Respiratory Diseases and Infections 10.3 Pulmonary Delivery Systems 10.3.1 Inhalation Therapy 10.3.1.1 Macro- and Microstructure of Lungs and Mechanism of Deposition from Inhalation 10.3.1.2 Mechanism of Particle Deposition 10.3.1.3 Pulmonary Clearance 10.3.2 General Consideration for Effective Inhalation Therapy 10.3.3 Nanomedicines for Targeted Therapy to Lung Cancer 10.4 Potential Limitations of Pulmonary Delivery 10.5 Nanomedicines Used Diagnosis, Treatment, and Prevention of Respiratory Diseases 10.5.1 Nanoparticles 10.5.2 Dendrimers 10.5.3 Liposomes 10.5.4 Lipid-Based Nanoparticles 10.5.5 Lipid-Polymer Hybrid Nanoparticles 10.5.6 Micelles 10.5.7 Magnetic Core-Shell Nanoparticles 10.5.8 Mesoporous Silica Nanoparticle 10.6 Limitation/Potential Risk of Nano-Based Formulations 10.7 Summary and Future Prospects References 11: Nanoemulsion Delivery of Herbal Products: Prospects and Challenges 11.1 Nanoemulsion Systems for Drug Delivery 11.2 Herbal-Based Nanoemulsion System 11.2.1 Previous Research Studies on Herbal Nanoemulsions 11.3 Challenges and Advantages of Herbal Nanoemulsion Products 11.4 Applications of Herbal Nanoemulsions 11.4.1 In Drug Delivery 11.4.1.1 Passive and Active Tumor Targeting 11.4.1.2 Topical/Transdermal Delivery 11.4.1.3 Oral Delivery 11.4.1.4 Ocular Delivery 11.4.1.5 Nose-to-Brain Delivery 11.4.2 Management of Vector-Borne Disease 11.4.3 In the Food Industry 11.5 Safety and Regulatory Issues of Herbal Nanoemulsions 11.5.1 Bioassays and Standardization of Herbal Drugs 11.5.2 Safety Consideration 11.5.3 Production and Quality Control 11.6 Future Prospects of Nanoemulsion-Based Herbal Drug Delivery 11.6.1 Macrophage-Targeted Vaccine Delivery 11.6.2 Vascular Imaging and Drug Delivery 11.6.3 Nanoemulsions in the Food Industry 11.6.4 Nanoemulsions as Antiageing Formulations 11.6.5 Fundamental Toxicology Research 11.7 Conclusion References 12: Stimuli-Responsive Polymers for Cancer Nanomedicines 12.1 Introduction 12.2 Physically Dependent Stimuli-Responsive Polymers 12.2.1 Temperature-Responsive Polymers 12.2.2 Light-Responsive Polymers 12.2.3 Electro-Responsive Polymers 12.3 Chemically Dependent Stimuli-Responsive Polymers 12.3.1 pH-Responsive Polymers 12.3.2 Ion-Responsive Polymers 12.3.3 Redox-Responsive Polymers 12.4 Biologically Dependent Stimuli-Responsive Polymers 12.4.1 ROS-Responsive Polymers 12.4.2 Hypoxia-Responsive Polymers 12.4.3 Enzyme-Responsive Polymers 12.5 Dual or Multiple Stimuli-Responsive Polymers 12.5.1 pH- and Temperature-Responsive Polymers 12.5.2 pH- and Redox-Responsive Polymers 12.5.3 Triple Stimuli-Responsive Polymers 12.6 Brief Description of Some Common Stimuli-Responsive Polymers 12.6.1 Poly (N-Isopropylacrylamide) (PNiPAAm) 12.6.2 Poly (N-Vinylcaprolactam) (PNVC) 12.6.3 Poly (Methyl Vinyl Ether) (PMVE) 12.6.4 Chitosan 12.6.5 Pullulan 12.6.6 Poly(N-Ethyl Oxazoline) PEtOx 12.7 Stimuli-Responsive Polymeric Nanoformulations for Cancer Therapy 12.8 Challenges in Developing SRP-Based Nanomedicines Against Cancer 12.9 Conclusion and Future Perspectives References 13: Carbohydrate-Derived Tailorable Interfaces: Recent Advances and Applications 13.1 Introduction 13.2 Some Examples of Carbohydrates and Their Classification 13.3 Applications of Carbohydrate-Based Functional Interfaces in Nanomedicine 13.3.1 Functionalization of Carbohydrate Nanocarriers 13.3.2 Carbohydrates as Full Construction Agents: Synthesis and Applications of Nanogels and Microgels 13.4 Carbohydrate-Based Smart Delivery Systems: Basics of Targeted Delivery 13.5 Concluding Remarks References 14: Multifunctional Nanoscale Particles for Theranostic Application in Healthcare 14.1 Introduction 14.2 Different Multifunctional Nanocarriers Used as Theranostic System 14.2.1 Polymer Conjugates 14.2.2 Dendrimers 14.2.3 Polymeric Micelles 14.2.4 SPIONs 14.2.5 Quantum Dots 14.2.6 Carbon Dots (Graphene Quantum Dots) 14.2.7 Gold Nanostructures 14.2.8 Stimuli Responsive 14.2.8.1 Temperature Sensitive 14.2.8.2 pH Sensitive 14.2.8.3 Ultrasound Responsive 14.3 Conclusions References 15: Ligand Nanoparticle Conjugation Approach for Targeted Cancer Chemotherapy 15.1 Introduction 15.2 Characteristics of Cancer Cells 15.3 Physiological Hindrance of Cancer Cell Targeting 15.4 Strategies of Cancer Cell Targeting 15.4.1 Cancer Cell Targets and Targeting Ligands 15.4.2 G protein-Coupled Receptors 15.4.2.1 Bombesin (Bn) Receptors 15.4.2.2 Somatostatin Receptors 15.4.2.3 Endothelin Receptors 15.4.3 Integrin Receptors 15.4.3.1 Integrin αvbeta3 15.4.3.2 Integrin α-3 15.4.4 Folate Receptors 15.4.5 Transferrin Receptors 15.4.6 LDL Receptor 15.4.7 Epidermal Growth Factor Receptors 15.4.8 Fibroblast Growth Factor Receptors 15.4.9 Sigma Receptors 15.5 Conjugation Strategies to Functionalize Nanocarriers 15.5.1 Covalent Method of Conjugation 15.5.2 Physical Adsorption Methods 15.6 Cell Internalization of Nanocarriers 15.7 Conclusion and Prospects References 16: Tunable Biopolymeric Drug Carrier Nanovehicles and Their Safety 16.1 Introduction 16.2 Design of Biopolymeric Nanovehicles 16.2.1 Polysaccharide-Derived Nanocarriers 16.2.2 Proteins/Polypeptide-Based Nanocarriers 16.2.3 Polyphenol-Based Nanocarriers 16.2.4 Others Nanocarriers Derived from Small Biological Molecules 16.3 Drug Loading and Release Studies for Biopolymeric Nanovehicles 16.3.1 Physical Drug Loading and Release 16.3.2 Chemical Drug Loading and Release 16.3.3 Loading by Encapsulation/Entrapment and Release 16.4 Clinical Application and Safety of Therapeutic Carrier Nanovehicles 16.5 Concluding Remark References 17: Nanomedicine for Challenging Solid Tumors: Recent Trends and Future Ahead 17.1 Introduction 17.1.1 Stages of Tumor Development 17.1.2 Epidemiology 17.1.3 Risk Factors 17.1.4 Pathophysiology 17.2 Treatment 17.2.1 Other Potential Targeted Therapies 17.3 Current Challenges 17.3.1 Tumor Challenges and Nanoformulations to Overcome It 17.3.1.1 Tumor Interstitial Fluid Pressure (TIFP) 17.3.1.2 Tumor Microenvironment Challenges Low Tumor pH Tumor Hypoxia 17.3.1.3 Angiogenesis and Vascular Disrupting Agent (VDA) 17.3.1.4 Active and Passive Tumor Targeting 17.3.1.5 Multidrug-Resistance 17.3.2 Nanoformulations to Treat Different Cancers 17.4 Conclusion References Part III: Regulatory, Safety and Marketing Aspects of Nano Medicine 18: Recent Trends for Nanomedicine Safety 18.1 Introduction 18.2 Polymeric Drug Nanocarriers 18.3 Liposomal Drug Nanocarriers 18.4 Nanocrystal Drug Nanocarriers 18.5 Micelle Nanocarriers 18.6 Protein-Based Nanocarriers 18.7 Dendrimers 18.8 Other Nanocarriers 18.8.1 Carbon Nanotubes 18.8.2 Metal and Metal Oxide Nanoformulations 18.9 Toxicity Aspect of Nanomaterials 18.9.1 Neurotoxicity 18.9.2 Cardiotoxicity 18.9.3 Pulmonary Toxicity 18.9.4 Hemotoxicity 18.9.5 Hepatotoxicity and Nephrotoxicity 18.9.6 Genotoxicity 18.9.7 Methods of Assessment of Toxicity of Nanomaterials 18.10 Theranostic Applications of Nanomedicines 18.10.1 Drug-Polymer Conjugate 18.10.2 Polymers, Liposomes, Micelles, and Dendrimers 18.10.3 Noble Metal Nanoparticles 18.10.4 Quantum Dots (QDs) 18.10.5 Carbon nanotubes 18.11 Nanomedicines in Clinical Trials 18.12 Regulatory Authorities for Monitoring Nanomedicines and Their Adverse Effects and Safety Concerns 18.13 Conclusion References 19: Nanotoxicity and Risk Assessment of Nanomedicines 19.1 Introduction 19.2 Nanotoxicology 19.2.1 Nanomaterial Cellular Uptake 19.2.1.1 Nasal Route 19.2.1.2 Gastrointestinal Uptake 19.2.1.3 Skin Uptake 19.2.2 Factors Influencing Nanotoxicity 19.2.2.1 Size 19.2.2.2 Morphology 19.2.2.3 Surface of Nanomaterial 19.2.3 Materials 19.2.4 Underlying Mechanisms Behind NP-Mediated Toxicity 19.2.4.1 Oxidative Stress 19.2.4.2 Autophagy and Disruption of Lysosomal Function 19.2.4.3 Necrosis and Apoptosis (Cell Death) 19.3 Risk Assessment 19.4 Conclusion References 20: Clinical Toxicity of Nanomedicines 20.1 Nanomaterials in Medicine: Nanomedicine 20.1.1 Biodegradable or Nonbiodegradable NPs 20.1.2 Bioactive or Carrier Function of Nanoparticles in NMs 20.2 Clinical Toxicity of NMs 20.3 Factors Responsible for Clinical Toxicity of NMs 20.3.1 Physicochemical Properties 20.3.1.1 Effect of Size, Surface Area, and Shape 20.3.1.2 Effect of Surface Charge and Coating 20.3.1.3 Effect of Composition and Degradability 20.3.1.4 Other Factors 20.3.2 Route of Administration 20.3.2.1 Systemic Routes of Administration Intravenous 20.3.2.2 Slow Absorbing Systemic Routes of Administration Oral Respiratory Tract Skin 20.3.2.3 Route for Local Delivery at Diseased Site 20.4 Clinical Insights into the Mechanism of NM Toxicity 20.4.1 Cellular Mechanism 20.4.2 Subcellular Mechanisms 20.4.3 Molecular Mechanisms 20.5 Models for Assessing Toxicity 20.5.1 Cell-Based Models 20.5.1.1 2D Cell Culture Models: A High-Throughput Screening Approach 20.5.1.2 3D Monoculture and Coculture Models: Physiological Relevance 20.5.2 Animal Models for Toxicity Testing 20.5.2.1 Small Animal Models 20.5.2.2 Nonhuman Primate Models 20.6 Regulatory Guidelines for Clinical Toxicity of NMs 20.6.1 Some of the Challenges Associated with Nanomaterial Regulation Are [107, 108] 20.6.2 Current Global Regulatory Status 20.7 Summary and Challenges 20.8 Future Prospects References 21: Nanomedicine: Risk, Safety, Regulation, and Public Health 21.1 Introduction 21.1.1 NanoMedicine 21.2 Growing Areas for Nanomedicines 21.3 Nanomedicine: Known and Unknown Risks 21.4 Risks for Nanomedicines 21.5 Nanomedicines in Biological Systems 21.6 Route-Specific Issues Related to Inhalation 21.7 Route-Specific Issues Related to Subcutaneous Sensitization 21.8 Route-Specific Issues Dermal 21.8.1 Increased Dermal and Systemic Bioavailability 21.9 Other Safety Issues Due to Nanoparticle Exposure 21.10 Possibilities of Nanoparticle Exposure in Industrial Setting 21.11 Occupational Hazards After Nanoparticle Exposure 21.12 Nanomedicine and the Pharmacokinetic and Pharmacodynamic Considerations 21.13 Regulations of Nanoproducts and Nanomedicines 21.14 Challenges Ahead for the Regulatory Bodies 21.15 US FDA Guidance Document 2011 21.16 US FDA Center for Drug Evaluation and Research (CDER) Guidelines for Nanoproducts 21.17 The Center for Veterinary Medicine (CVM) Guidelines 21.18 The Center for Food Safety and Applied Nutrition (CFSAN) Guidelines 21.19 CFSAN on Food and Food Packaging Guidance 21.20 Environmental Protection Agencies (EPA) and Toxic Substances Control Act (TSCA) Recommendations Adopted by FDA 21.21 FDA Guidelines on Devices Using Nanotechnology 21.22 Regulations About Nanoproducts in Other Countries 21.23 Nanotechnology, Public Health, and Public Opinions References 22: New Deliveries and Nanomedicines: Commercial Aspects and Business Perspectives 22.1 Overview 22.2 Basic Economics and Resources 22.2.1 Profits and Patent Protection 22.2.2 Patent Expiration: Brands Versus Generics 22.2.3 Price Controls and After-Tax Returns 22.3 Drug Repurposing in Pharmaceutical Industry: New Therapeutic Opportunities for Existing Drugs 22.3.1 Rationale and Approaches of Repurposing 22.3.2 Reformulation: Key Segment in Pharmaceutical Product Life Cycle Management 22.4 Prioritization Process for Reformulation Drug Candidates 22.4.1 Developing Drug Candidates´ List 22.4.2 Scrutinizing the Delivery Technology 22.4.3 Analyzing Therapeutic or Administrative Unfulfilled Needs 22.4.4 Conducting a Competitive Screen 22.4.5 Mapping the Market 22.5 Decisive Reformulation Factors 22.5.1 Extended Patent Life: Brands Versus Generics 22.5.2 Reduced Patient Noncompliance 22.5.3 Enhanced Therapeutic Efficacy 22.5.4 Decreased Manufacturing Costs 22.5.5 Expanded Market 22.6 Drug Industry´s Need of ``New Deliveries´´ Approach 22.6.1 New Presentations 22.6.2 Extended-Release Formulations 22.6.3 Fixed-Dose Combinations 22.6.4 User-Friendly Dosage Forms 22.6.5 Alternative Routes of Administration 22.7 Drug Industry´s Need of Miniaturization and Nanotechnology: Evolution and Revolution of Nanomedicine 22.8 Challenges in Nanomedicines´ Clinical Translation and Commercialization 22.8.1 Biological Barriers 22.8.2 Manufacturing and Scale-up Complexities 22.8.3 Biocompatibility and Toxicity Issues 22.8.4 Ineffective Patenting 22.8.5 Inadequate Regulations 22.8.6 Financial Resources, Profitability, and Overall Cost-Effectiveness 22.8.7 Generics Market and Insurance Policies 22.9 New Deliveries and Nanomedicine: Market and Forecast 22.10 Concluding Remarks References 23: Global Growth of Nanomedicine and What Role it Will Play for Economically Weak Countries 23.1 Introduction 23.2 Nanomedicine and its Application 23.3 Global Market of Nanomedicine 23.4 Nanomedicine: A Disruptive Innovation 23.5 Challenges in Global Growth of Nanomedicine 23.6 Impact on Economically Weak Countries: Pros and Cons 23.7 Future Prospects of Nanomedicines 23.8 Conclusion References