دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Genxi Li
سری:
ISBN (شابک) : 012815053X, 9780128150535
ناشر: Elsevier
سال نشر: 2018
تعداد صفحات: 362
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 42 مگابایت
در صورت تبدیل فایل کتاب Nano-inspired Biosensors for Protein Assay with Clinical Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب حسگرهای زیستی الهام گرفته شده از نانو برای سنجش پروتئین با کاربردهای بالینی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
حسگرهای زیستی الهام گرفته شده از نانو برای سنجش پروتئین با کاربردهای بالینی جدیدترین پیشرفتها در حسگر زیستی با الهام از نانو را معرفی میکند و به خوانندگان کمک میکند تا اصول و مرزهای این زمینه به سرعت در حال پیشرفت را درک کنند. در دهه های اخیر، علاقه زیادی به حسگرهای زیستی الهام گرفته از نانو برای کاربردهای بالینی افزایش یافته است. پروتئین ها، به عنوان مثال آنتی ژن-آنتی بادی، نشانگرهای تومور و آنزیم ها مهم ترین هدف در تشخیص بیماری هستند و انواع تکنیک ها و استراتژی های زیست حسی برای سنجش پروتئین توسعه یافته اند. این کتاب تمام ادبیات فعلی را در مورد جدیدترین پیشرفتهای آنالیز پروتئین و روشهای جدید در طراحی انواع جدید حسگرهای زیستی برای استفاده در تشخیص بالینی گرد هم میآورد.
Nano-inspired Biosensors for Protein Assay with Clinical Applications introduces the latest developments in nano-inspired biosensing, helping readers understand both the fundamentals and frontiers in this rapidly advancing field. In recent decades, there has been increased interest in nano-inspired biosensors for clinical application. Proteins, e.g. antigen-antibody, tumor markers and enzymes are the most important target in disease diagnosis, and a variety of biosensing techniques and strategies have been developed for protein assay. This book brings together all the current literature on the most recent advances of protein analysis and new methodologies in designing new kinds of biosensors for clinical diagnostic use.
Front-matte_2019_Nano-Inspired-Biosensors-for-Protein-Assay-with-Clinical-Ap Nano-inspired Biosensors for Protein Assay with Clinical Applications Copyright_2019_Nano-Inspired-Biosensors-for-Protein-Assay-with-Clinical-Appl Copyright List-of-Contribu_2019_Nano-Inspired-Biosensors-for-Protein-Assay-with-Clinic List of Contributors Preface_2019_Nano-Inspired-Biosensors-for-Protein-Assay-with-Clinical-Applic Preface Acknowledgmen_2019_Nano-Inspired-Biosensors-for-Protein-Assay-with-Clinical- Acknowledgments Introductio_2019_Nano-Inspired-Biosensors-for-Protein-Assay-with-Clinical-Ap Introduction I.1 The Principle of Biosensor I.1.1 Bioreceptor I.1.1.1 Enzyme I.1.1.2 Antibody–Antigen I.1.1.3 Cell and Tissue I.1.1.4 DNA and Aptamer I.1.1.5 Small Molecule Ligand I.1.1.6 Immobilization of Bio-Receptor I.1.2 Transducer I.1.2.1 Electric Transducer I.1.2.2 Optical Transducer I.1.2.3 Magnetic Transducer I.1.2.4 Mechanical Transducer I.1.3 Signal Amplification I.1.3.1 Catalyst-Assisted Signal Amplification I.1.3.2 DNA Amplification—Assisted Signal Amplification I.2 Nano-Inspired Biosensor I.2.1 Immobilization of Biomolecules I.2.2 Design of Signal Probe I.2.2.1 Electrochemical Probe I.2.2.2 Optical Probe I.2.2.3 Magnetic Probe I.2.2.4 Mechanical Probe I.2.2.5 Signal Amplification I.3 Biosensor Application I.3.1 Disease Diagnosis I.3.2 Other Applications I.4 Overview of This Book References 01 Part I Nanomaterials for Protein Assay 1 1 Carbon Nanomaterials 1.1 Introduction 1.2 Fullerene 1.2.1 The Fundamental Properties of Fullerene 1.2.2 The Fullerene-Modified Electrodes for Protein Assay 1.2.3 Fullerene-Based Piezoelectric Quartz Crystal for Protein Assay 1.3 Graphene and Graphene Oxide 1.3.1 The Fundamental Properties of Graphene and Graphene Oxide 1.3.2 The Highly Efficient Quencher of Graphene and Graphene Oxide for Protein Assay 1.3.3 Graphene and Graphene Oxide-Modified Electrodes for Protein Assay 1.3.4 Graphene and Graphene Oxide as Signaling Labels in Electrochemistry for Protein Assay 1.3.5 Graphene-Based Surface Plasmon Resonance (SPR) for Protein Assay 1.4 Carbon Nanotubes 1.4.1 The Fundamental Properties of CNT 1.4.2 CNT Based on Optical Spectrum for Protein Assay 1.4.2.1 CNT-Based Fluorescence 1.4.2.2 CNT-Based Raman Scattering 1.4.3 CNT-Modified Electrodes for Protein Assay 1.4.4 CNTs as Signaling Labels in Electrochemistry for Protein Assay 1.5 Conclusion References 2 2 Metal Nanomaterials 2.1 Introduction 2.2 Nucleic Acid-Functionalized Metal Nanomaterials for Protein Assays 2.3 Surface Plasmon Resonance Featured Metal Nanomaterials for Protein Assays 2.3.1 SPR for Colorimetric Detection of Proteins 2.3.2 Solution-Based LSPR for Protein Assays 2.3.3 Surface-Based LSPR for Protein Assays 2.3.4 Refractive Index Shift-Based Direct Protein Assays 2.4 Surface-Enhanced Raman Scattering-Based Protein Assays 2.5 Enzyme-Controlled MNMs Growth for Colorimetric Detection of Proteins 2.6 Natural Enzyme Activity Mimicking-based Protein Assays 2.7 Conclusion References Further Reading 3 3 Quantum Dots and Nanoclusters 3.1 Quantum Dots 3.1.1 Introduction of Quantum Dots 3.1.2 Properties of Quantum Dots 3.1.3 Quantum Dots-Based Biosensors for Protein Assays 3.1.3.1 Biosensors Based on Ligand–Target Interactions 3.1.3.2 Biosensors Based on QDs–Target Interactions 3.1.3.3 Biosensors Based on Fluorescence Resonance Energy Transfer 3.1.4 Conclusion for Quantum Dots-Based Biosensors 3.2 Nanoclusters 3.2.1 Introduction of Nanoclusters 3.2.2 Properties of Metal Nanoclusters 3.2.3 Metal Nanoclusters-Based Biosensors for Proteins Assays 3.2.3.1 Biosensors Based on AuNCs 3.2.3.2 Biosensors Based on AgNCs 3.2.3.3 Biosensors Based on CuNCs 3.2.3.4 Biosensors Based on Bimetallic Nanoclusters 3.3 Conclusions References Further Reading 4 4 Other Nanomaterials 4.1 Introduction 4.2 Silicon Nanomaterials 4.2.1 Luminescent Silicon Nanoparticles as Signaling Probes for Protein Assays 4.2.2 Silicon Nanowires-Based Field-Effect Transistor for Protein Assays 4.2.3 Mesoporous Silica Nanoparticles-Based Biosensors 4.3 Upconversion Nanomaterials 4.3.1 Upconverting Nanoparticles as Signaling Probes for Protein Assays 4.3.2 Energy Resonance Transfer-Based Upconversion Nanoplatforms for Protein Assays 4.4 Liposome 4.4.1 Liposome-Based Colorimetric Assays 4.4.2 Liposome-Based Electrochemical Assays 4.4.3 Liposome-Based Fluorescent Assays 4.5 Virus Nanoparticles 4.6 Conclusions References Further Reading 4.1 Part II Molecular Recognition in Protein Assay 5 5 Immuno-Biosensor 5.1 Cancer Diagnostics and Monitoring 5.2 Tuberculosis Diagnostics and Monitoring 5.3 Diabetes Diagnostics and Monitoring 5.4 Human Immunodeficiency Virus (HIV) 5.5 Urinary Tract Infection Diagnosis 5.6 Pregnancy Screening 5.7 Conclusion References 6 6 Aptasensors 6.1 Sandwich Aptasensor 6.1.1 Cancers 6.1.2 Tuberculosis 6.1.3 Diabetes 6.2 Assay Based on Aptamer Conformational Switch 6.2.1 Cancers 6.2.2 Tuberculosis 6.2.3 Human Immunodeficiency Virus (HIV) 6.2.4 Diabetes 6.3 Assay Based on Competitive Binding of Target With Aptamer 6.3.1 Cancer 6.3.2 Tuberculosis 6.3.3 Human Immunodeficiency Virus (HIV) 6.3.4 Diabetes 6.4 Split-Type Assay 6.5 Assay Based on Aptamer–Cell Interaction 6.6 Conclusion References 7 7 Peptide-Based Biosensors 7.1 Biosensors Based on the Binding of Peptide to Target 7.1.1 Cancer 7.1.2 Microbial Infection 7.1.3 Tuberculosis 7.1.4 Pregnancy Screening 7.1.5 Human Immunodeficiency Virus 7.2 Biosensors Based on Cleavage of the Peptide 7.3 Biosensors Based on the Conformational Shift of Peptide 7.4 Conclusion References 8 8 Protein Assay Based on Protein–Small Molecule Interaction 8.1 Protein Assay Based on Small Molecule-Tethered Chemical Probes 8.1.1 Human Carbonic Anhydrases 8.1.2 Biotin Receptor and Folate Receptor 8.2 Protein Assay Based on Small Molecule-Linked DNA 8.2.1 Folate Receptor 8.2.2 Biotin Receptor 8.3 Conclusion References 8.1 Part III Biosensing Technologies for Protein Assay 9 9 Electrochemistry 9.1 Introduction 9.2 Electrochemical Techniques 9.2.1 Voltammetry and Amperometry 9.2.2 Impedance 9.2.3 Conductometry 9.2.4 Potentiometry 9.3 Electrochemical Biosensors 9.3.1 Introduction 9.3.2 Category of Electrochemical Biosensors 9.3.2.1 Biocatalytic Sensors 9.3.2.2 Affinity Biosensors 9.3.2.2.1 DNA Hybridization-Based Electrochemical Biosensors 9.3.2.2.2 Immunosensors 9.3.2.2.3 Aptamer-Based Electrochemical Biosensors 9.3.2.2.4 Peptide-Based Electrochemical Sensors 9.4 Summary and Prospects References Further Reading 10 10 Spectrometry 10.1 Colorimetry 10.2 Fluorescence 10.2.1 Introduction 10.2.2 Fluorescent Nanomaterials 10.2.3 Nanomaterials as Fluorescence Quenchers 10.2.4 Nanomaterials as Fluorophores Carriers 10.2.5 Metal-Enhanced Fluorescence 10.3 Chemiluminescence 10.3.1 Introduction 10.3.2 Nanozyme-Based Chemiluminescence 10.3.3 Nanomaterials in Chemiluminescence Resonance Energy Transfer 10.4 Electrochemiluminescence 10.4.1 Introduction 10.4.2 Nanomaterials as Electrochemiluminescence Labels 10.4.3 Nanomaterials-Enhanced Electrochemiluminescence 10.5 Surface Plasmon Resonance Assay 10.6 Surface-Enhanced Raman Scattering 10.7 Dynamic Light Scattering Signal-Readout 10.7.1 Introduction 10.7.2 Nanoparticles-Enabled Dynamic Light Scattering Assay 10.7.3 Dynamic Light Scattering Coupled With Immunoassay 10.8 Conclusion References Further Reading 11 11 Other Signal-Readout Technologies 11.1 Distance Signal-Readout 11.2 Pressure Signal-Readout 11.3 Piezoelectric Biosensors 11.4 Magnetic Signal-Readout 11.5 Smell Signal-Readout References 12 12 Signal Amplification 12.1 Introduction 12.2 Nucleic Acid-Based Signal Amplification 12.2.1 PCR-Based Signal Amplification 12.2.2 Isothermal Nucleic Acid Amplification 12.2.3 Enzyme-Free Nucleic Acid Amplification 12.3 Enzyme-Based Signal Amplification 12.3.1 Natural Protein Enzyme 12.3.2 DNAzyme 12.3.3 Nucleic Acid Tool Enzyme 12.3.4 Nanozyme 12.4 “1-to-N” Binding-Based Signal Amplification 12.4.1 Biotin–Streptavidin System 12.4.2 Nanocarrier 12.5 Conclusion References 13 Index