دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Ajay Kumar Mishra
سری: Environmental Footprints and Eco-design of Products and Processes
ISBN (شابک) : 9811979774, 9789811979774
ناشر: Springer
سال نشر: 2023
تعداد صفحات: 229
[230]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 6 Mb
در صورت تبدیل فایل کتاب Nano-engineered Materials for Textile Waste Remediation به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مواد مهندسی نانو برای پاکسازی زباله های نساجی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب وضعیت کاملی از هنر را برای انواع مختلف نانومواد، سرنوشت زیست محیطی آنها و استفاده از آنها در پاکسازی زباله های نساجی ارائه می دهد. مواد مهندسی شده نانو شامل نانوذرات، نانوالیاف، نانولوله ها به طور گسترده برای کاربردهای مختلف مورد استفاده قرار گرفته اند. نگرانی های زیست محیطی عمدتاً به دلیل تخلیه زباله های نساجی ذکر شده است. فناوری نانو در تحقیقات و ارائه راه حل های پایدار در به حداقل رساندن ضایعات به سرعت در حال رشد است. این همچنین خطر قرار گرفتن در معرض و خطرات سلامتی را به حداقل می رساند. با توسعه صنعت، آلودگی محیط زیست و کمبود انرژی، آگاهی را نسبت به یک بحران بالقوه جهانی افزایش داده است. بنابراین، توسعه یک روش ساده و موثر برای رسیدگی به این مسائل فعلی ضروری است. مواد با مهندسی نانو می توانند راه حل بهتری در یافتن راه حل پایداری زیست محیطی به ویژه در اصلاح زباله های نساجی باشند.
مواد مهندسی شده نانو به عنوان فوتوکاتالیست های پیشگام
ظاهر شده اند و بیشتر تحقیقات فعلی در این زمینه را تشکیل می
دهند. این میتواند مساحت سطح بزرگ، مورفولوژیهای متنوع،
حالتهای سطح فراوان و مدلسازی آسان دستگاه را فراهم کند، که
همگی برای تخریب نوری مفید هستند. علاوه بر این، پایداری و
هزینه مواد مهندسی شده نانو از عوامل حیاتی است. بنابراین،
شناسایی و طراحی مواد نانو مهندسی که برای پاکسازی ضایعات نساجی
کارآمد، پایدار و فراوان باشند، یک چالش بسیار مهم است.
>
This book presents a complete state of the art for different types of nanomaterial, their environmental fate, and their use in textile waste remediation. Nano-engineered materials including nanoparticles, nanofibers, nanotubes have been used extensively for a variety of applications. Environmental concerns have been noted mainly due to the discharge of textile waste. Nanotechnology is fast growing on research and bringing sustainable solution in minimizing the waste. This also minimizes the risk of exposure and health hazards. With the development of industry, environmental pollution and energy shortage have raised awareness of a potential global crisis. So, it is urgent to develop a simple and effective method to address these current issues. Nano-engineered materials can be better solution in finding solution of environmental sustainability more specific to the textile waste remediation.
Nano-engineered materials have emerged as pioneering photocatalysts and account for most of the current research in this area. This can provide large surface areas, diverse morphologies, abundant surface states, and easy device modeling, all of which are properties beneficial to photodegradation. Furthermore, the stability and cost of nano-engineered materials are critical factors. Therefore, it is a challenge of great importance to identify and design nano-engineered materials that are efficient, stable, and abundant for the remediation of textile waste.
Preface Contents Introduction to Textile Waste Remediation 1 Introduction 1.1 What is Textile Waste Remediation? 1.2 Types of Textile Wastewater [7] 2 Textile Waste Remediation Treatment 3 Use of Technology in Textile Wastewater Treatment 4 Challenges Faced in Textile Waste Remediation 5 Solutions to the Challenges Faced Due to Textile Wastewater Treatment 5.1 Reuse of Textile Wastewater 5.2 Conclusions 5.3 Future Scenario References Textile Waste: The Genesis, Environmental Impact and Remediation Using Nanomaterials 1 Introduction 2 The Genesis of Textile Waste 2.1 Pre-consumer Textile Waste 2.2 Post-consumer Textile Waste 2.3 Industrial Waste 3 Environmental Impact 4 Remediation of Textile Wastes 5 Conclusions References Degradation of Reactive Dyes Using Photoactive Membranes 1 Introduction 2 Environmental and Human Health Impacts of Reactive Dyes 3 Photocatalytic Membranes 3.1 Factors Affecting Membrane Performance in Photodegradation Efficiency 4 Membrane Fabrication Methods 4.1 Facile Spray Deposition 4.2 Atomic Layer Deposition 4.3 Chemical Vapour Deposition 4.4 Electrospinning and Hydrothermal Reaction 4.5 Dip-Coating 4.6 Phase Inversion 5 Applications in Dye Removal 6 Photocatalysis 6.1 UV-Driven Photocatalysis 6.2 Solar-Driven Photocatalysis 6.3 Coupling Membrane Filtration with Photocatalysis 7 Photoreactors 7.1 Reactor Design 7.2 Slurry Photocatalytic Membrane Reactor 7.3 Immobilized Photocatalytic Membrane Reactor 8 Conclusion and Future Outlook References Bio-Remediation of Organic Dyes from Wastewater by Microbial Colony—A Short Review 1 Introduction 2 Importance of Biological Treatment Relative to Physicochemical Methods 3 Physical and Chemical Methods 4 Biological Methods 5 Decolorization and Degradation of Azo Dyes by Fungi 6 Decolorization and Degradation of Azo Dyes by Yeast 7 Decolorization and Degradation of Azo Dyes by Algae 8 Decolorization and Degradation of Azo Dyes by Plants (Phytoremediation) 9 Bacterial Decolorization and Degradation of Azo Dyes 10 Using Pure Bacterial Culture 11 Using Co-culture and Mixed Bacterial Cultures 12 Mechanisms of Microbial Color Removal 13 Factors Affecting Bacterial Decolorization 14 Effects of Oxygen and Agitation 15 Effects of Carbon and Nitrogen Source Supplements 16 Effects of Temperature 17 Effects of pH 18 Effects of Dye Concentration 19 Effects of Dye Structure 20 Effects of Electron Donor 21 Effects of Redox Mediator 22 Reductive Enzymes Involved in the Bacterial Degradation of Azo Dyes 23 Oxidative Enzymes Involved in the Bacterial Degradation of Azo Dyes 24 Microbial Toxicity 25 Conclusions References Textile Waste Conversion into Valuable Products for Environmental Impact Abatement 1 Introduction 2 Materials and Methods 2.1 Materials 2.2 Thermogravimetric Assays 2.3 Development of the Activated Carbon Cloths 2.4 Physicochemical Characterization of the Activated Carbon Cloths 2.5 Batch Adsorption Experiments 3 Results and Discussion 3.1 Thermal Degradation Behavior of the Textile Scraps 3.2 Yields and Physicochemical Properties of the Activated Carbon Cloths 3.3 Effect of the Activating Agent on Yield and Physicochemical Characteristics of the Activated Carbon Cloths from Selected Textile Scraps 3.4 Effectiveness of the Activated Carbon Cloths in Water Contaminants Removal 4 Conclusions References MOF: A Futuristic Material for Dyes Remediation 1 Overview on, MOF for Dyes 2 Crystalline Sponge Method 2.1 A Crystallographic Capture of Dyes in Non-Crystalline State 3 A Crystallographic-Capture 3.1 A Vibrant Arena of Chemical-Structure Elucidation 4 Crystallographic-Competency 4.1 Crystallography is a Unique Way of Identification of Compounds by Complete Imagining Which Necessitates Its Application for a Wider Range of Chemical Species 5 Crystallographic-Confines for Absorption in Liquid State 5.1 The Problem Arises When Crystallography Requires-Well-Diffracting Crystals of the Target Compound 6 Context of Crystalline Sponge Method for Dye-Absorption 6.1 Crystalline Sponge Method-A Crystallography Without the Crystallization of Target Dye-Compound 7 Improvements of Crystalline Sponge Method 8 Essentials of Crystalline Sponge Method 9 Absolute Structure Determination 10 Solution & Refinement of Encapsulated Molecular Species 11 Chronology of Crystalline Sponge Method 11.1 Chronological Evolution of Crystallography Without Crystallization-The following Studies were on a Variety of Compounds of All Sizes, of Different Chemical Natures, in Diverse Chemical Environments from Non-polar Solvents to the Most Polar Such as-Water. Over 1000 Hits Reported in CSD, Were Merely for Zn-TPT and Analogous MOFs by Now 12 Overview on MOF, as a Dye-Absorbent 12.1 Metal-Organic Frameworks Have the Greatest Surface Area of Known Chemical-Compounds-MOF’s are the Best Crystalline Sponges with a Rigid Framework, Appropriate for Dye Absorption 12.2 MOF-Dye Absorbent, as Crystalline Material 12.3 Extremely Large Surface Area 12.4 Pore Space Within MOF 12.5 Active Sites Within MOF 12.6 Thermal Response 12.7 Mechanical Stress 12.8 Elasticity/Flexibility 13 MOF Topology 13.1 Apart from Chemical Constitution, MOF’s Topology Has a Very Significant Role in Guest–host Coordination 14 Non-covalent Interactions 14.1 Profound Action of Non-covalent Interactions towards the Crystalline Sponge Method 15 A Relative Relevance of Non-covalent Interactions 16 Electrostatic Force—A Central Force of All Contacts 17 Kinetic Aspect of Interactions 17.1 NCIs Are Necessary for MOF-Dye Structure Integrity 18 Conclusions References Environmental Hazards on Textile Waste 1 Introduction 1.1 Overview of Textile Industry and Waste Water Generation 1.2 Categories of Industrial Waste 1.3 Impact of Water Pollution on Human Life 2 Some Ways to Reduce Water Pollution 3 Conclusions References Recent Trends in Eco-Friendly Materials for Agrochemical Pollutants Removal: Polysaccharide-Based Nanocomposite Materials 1 Introduction 2 Agrochemicals 2.1 Origin and Classification 2.2 Pesticides 2.3 Fertilizers 2.4 Environmental Implications, Remediation Treatments, and Regulations 3 Nanocomposite Materials Based on Single Polysaccharides 4 Nanocomposite Materials Based on Polysaccharide Blends 5 Conclusions and Future Perspectives References Nano-engineered Material and Remediation Strategy 1 Introduction 2 Inorganic Nanomaterials 2.1 Gold Nanomaterials (GNPs) 2.2 Iron Oxide Nanoparticles (INPs) 2.3 Silver Nanoparticles (AgNPs) 2.4 Quantum Dots (QDs) 3 Composite-Based Nanomaterials 4 Carbon-Based Nanomaterials 4.1 Carbon Nanotubes (CNTs) [1] 4.2 Buckminsterfullerene [39] 4.3 Graphene Oxide (GO) [32] 5 Conclusions and Future Scope References Degradation of Textile Waste for Environmental Protection 1 Introduction 2 Textile Waste Degradation Methods 2.1 Biological Method 2.2 Non-Biological Method 2.3 Alternate Use of Textile Waste 3 Conclusions References