دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.] نویسندگان: Awesh K. Yadav (editor), Umesh Gupta (editor), Rajeev Sharma (editor) سری: ISBN (شابک) : 0128197935, 9780128197936 ناشر: Academic Press سال نشر: 2020 تعداد صفحات: 374 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 7 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Nano Drug Delivery Strategies for the Treatment of Cancers به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب استراتژیهای تحویل داروی نانو برای درمان سرطان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
استراتژیهای تحویل داروی نانو برای درمان سرطانها چندین رویکرد فعلی و امیدوارکننده برای تشخیص و درمان سرطان با استفاده از جدیدترین پیشرفتها در فناوریهای نانوپزشکی را مورد بحث قرار میدهد. این کتاب اطلاعات مقدماتی را در مورد بیولوژی انواع مختلف سرطان ارائه می دهد تا دانشی در مورد ویژگی های آنها در اختیار خواننده قرار دهد. علاوه بر این، سیستمهای مختلف دارورسانی جدید را مورد بحث قرار میدهد، جزئیات عملکرد، نتایج مورد انتظار و پیشرفتهای آینده در این زمینه، تمرکز بر سرطانهای مغز، دهان و گلو، سینه، ریه، کبد، پانکراس، معده، روده بزرگ، روده بزرگ، پوست و پروستات. .
این کتاب منبع ارزشمندی برای محققان سرطان، سرطانشناسان، فارماکولوژیستها و نانوتکنولوژیستهایی است که علاقهمند به سیستمها و دستگاههای جدید دارورسانی برای درمان انواع مختلف سرطان هستند که از پیشرفتهای اخیر در این زمینه هیجانانگیز بهره میبرند.
Nano Drug Delivery Strategies for the Treatment of Cancers discusses several current and promising approaches for the diagnosis and treatment of cancer by using the most recent developments in nanomedical technologies. The book presents introductory information about the biology of different types of cancer in order to provide the reader with knowledge on their specificities. In addition, it discusses various novel drug delivery systems, detailing their functionalities, expected outcomes and future developments in the field, focusing on brain, mouth and throat, breast, lung, liver, pancreas, stomach, colon, bool, skin and prostate cancers.
The book is a valuable source for cancer researchers, oncologists, pharmacologists and nanotechnologists who are interested in novel drug delivery systems and devices for treatment of various types of cancer that take advantage of recent advances in this exciting field.
Front Cover Nano Drug Delivery Strategies for the Treatment of Cancers Copyright Page Dedication Contents List of contributors Preface 1 Emergence of novel targeting systems and conventional therapies for effective cancer treatment 1.1 Introduction 1.2 Conventional therapies for the treatment of cancer 1.2.1 Role of surgery for cancer treatment 1.2.1.1 Types of surgery 1.2.1.2 Risk and side effects of surgery in cancer treatment 1.2.2 Role of radiotherapy for cancer treatment 1.2.2.1 Principles of radiation therapy 1.2.2.2 Some types of radiation therapy 1.2.3 Role of chemotherapy in cancer treatment 1.2.3.1 Principles of cancer treatment by chemotherapy 1.2.3.2 Indications for chemotherapy 1.3 Novel approaches for the treatment of cancer 1.3.1 Lipid-based nanomedicines 1.3.1.1 Liposomes 1.3.1.2 Niosomes 1.3.1.3 Ethosome 1.3.1.3.1 Ethosomal drug delivery systems showed various benefits 1.3.2.4 Transferosome 1.3.2.4.1 Characteristics of transferosomes 1.3.2.5 Nanoemulsion 1.3.2.6 Solid lipid nanoparticles 1.3.1.7 Nanostructured lipid carriers 1.3.1.7.1 Nanosuspension 1.3.2 Polymer-based nanomedicines 1.3.2.1 Carbon nanotubes 1.3.2.2 Dendrimers 1.3.2.3 Polymeric nanoparticles 1.3.2.4 Polymeric micelles 1.3.3 Miscellaneous nanocarriers 1.3.3.1 Quantum dots 1.4 Conclusion Acknowledgment References 2 Nanomedicine: future therapy for brain cancers 2.1 Introduction 2.2 Global statistics of brain cancers 2.3 Major drawbacks and circumstances in brain tumors 2.4 General strategy of nanoparticles for the treatment of brain cancers 2.4.1 Physical properties 2.4.2 Passive targeting 2.4.3 Active targeting 2.5 Mechanistic pathways employed by nanoparticles to cross the blood–brain barrier 2.5.1 Carrier-mediated transport 2.5.2 Receptor-mediated transport 2.5.3 Adsorptive-mediated transport 2.6 Nanomedicine for the treatment and diagnosis of gliomas 2.7 Nanomedicine for the diagnosis of brain cancers 2.7.1 Magnetic resonance imaging 2.7.2 Raman scattering and computed tomography imaging 2.7.3 Nanoparticles as carriers of fluorescent dyes for imaging tumors 2.7.4 Nanoparticles as fluorescent agents for tumor imaging 2.8 Nanomedicine for the treatment of brain cancer 2.8.1 Metal nanoparticles 2.8.1.1 Silica nanoparticles 2.8.1.2 Titanium oxide nanoparticles 2.8.1.3 Carbon nanodots 2.8.1.4 Magnetic nanoparticles 2.8.1.5 Gold nanoparticles 2.8.2 Liposomes 2.8.3 Polymeric nanoparticles 2.8.4 Dendrimers 2.9 Nanomedicines for brain cancer using a combinatorial approach 2.9.1 Combination of magnetic resonance imaging and therapy 2.9.2 Combination of optical imaging and therapy 2.9.3 Combination of multimodal imaging and therapy 2.10 Future perspectives and challenges 2.11 Conclusion Acknowledgment Abbreviations References 3 Nano drug delivery strategies for the treatment and diagnosis of oral and throat cancers 3.1 Oral and throat cancers 3.1.1 Conventional therapies for the management of oral cancers 3.1.2 Cisplatin 3.1.3 5-Fluorouracil 3.1.4 Paclitaxel/docetaxel 3.2 Transport barriers to drug delivery in head and neck tumors 3.3 Nanotechnology in head and neck cancer detection and diagnosis 3.3.1 Nano-based molecular imaging 3.3.1.1 Magnetic resonance imaging 3.3.1.2 Optical coherence tomography 3.3.1.3 Photoacoustic imaging 3.3.1.4 Surface plasmon resonance scattering 3.3.1.5 Surface-enhanced Raman spectroscopy 3.3.1.6 Quantum dots imaging and biomarkers 3.3.2 Nanotechnology-based drug delivery systems for the treatment of head and neck cancer 3.3.2.1 Cell targeting with nanoparticles 3.3.2.2 Drug delivery using nanoparticles for cancer stem-like cell targeting 3.3.2.3 Tumor microenvironment targeted nanotherapy 3.3.2.3.1 Nano-chemotherapeutics in targeting tumor vasculature 3.3.2.3.2 Nano-chemotherapeutics to target the chemical environment (hypoxia and acidic pH) of tumors 3.3.2.3.3 Nano-chemotherapeutics targeting metastasis 3.3.2.3.4 Potential of nanoparticles in head and neck cancer immunotherapy 3.3.2.3.5 Nanomedicine as a strategy for natural compound delivery for cancer treatment 3.4 Conclusion References 4 Nanoparticles and lung cancer 4.1 Introduction 4.1.1 Cause, molecular target 4.1.2 Traditional therapies for treatment 4.1.3 Shortcomings with existing treatments 4.2 Nanotechnology and lung cancer 4.2.1 Organic nanoparticles for lung cancer 4.2.2 Inorganic nanoparticles for lung cancer 4.2.3 Natural or biomaterials as nanoparticles 4.2.4 Other novel nanoparticles systems for lung cancer 4.3 Conclusion References 5 Nanoparticles and liver cancer 5.1 Introduction 5.2 Drug delivery to the liver with nanoparticles 5.3 Cellular uptake in vitro 5.4 Antitumor efficacy in vivo 5.5 Doxorubicin and lovastatin co-delivery liposomes 5.5.1 Anticancer activity 5.5.2 Histological analysis 5.6 Gold nanoparticles 5.6.1 Gold nanoparticle thermal therapy 5.6.2 Mechanism 5.6.3 Antitumor effect in vivo 5.7 Toxicity 5.8 Conclusion References 6 Nanoparticles and pancreas cancer 6.1 Introduction 6.2 Physiology of pancreatic cancer 6.3 Current scenario and epidemiology of pancreatic cancer 6.4 Treatment of pancreatic cancer 6.5 Mechanism of nanoparticle uptake in pancreatic cancer 6.6 Receptor for targeting pancreatic cancer 6.6.1 Epidermal growth factor receptor 6.6.2 CD44 receptor 6.6.3 Folate receptor 6.6.4 Transferrin receptor 6.6.5 Vascular endothelial growth factor 6.7 Characterization techniques 6.8 Nanocarrier systems in the treatment of pancreatic cancer 6.8.1 Nanoparticles 6.8.2 Liposomes 6.8.3 Carbon nanotubes 6.8.4 Dendrimer 6.8.5 Micelles 6.8.6 Nanogel 6.8.7 Quantum dots 6.9 Conclusion References 7 The role of nanoparticles in the treatment of gastric cancer 7.1 Introduction 7.2 Nanoparticles in the imaging of gastric cancer 7.2.1 Nanoparticles in systemic imaging 7.2.2 Other ways of imaging 7.2.2.1 Nanoparticles in locoregional imaging 7.2.2.2 Nanoparticles in theranostics 7.3 Nanoparticles in the detection of tumors 7.3.1 Nanoparticles in the early detection of gastric cancer via endoscopy 7.3.2 Nanoparticles in the detection of gastric cancer using biomarkers 7.3.3 Nanoparticles in the detection of circulating tumor cells in gastric cancer 7.4 Nanoparticle-based therapy of gastric cancer 7.4.1 Chitosan nanoparticles 7.4.2 Polymeric nanoparticles 7.4.3 Silver nanoparticles 7.4.4 Gold nanoparticles 7.4.5 Magnetic nanoparticles 7.4.6 Carbon nanotubes 7.4.7 Photodynamic therapy 7.4.8 Miscellaneous 7.5 Conclusion Disclosure statement Abbreviations References 8 Nanoparticles and colon cancer 8.1 Introduction 8.2 Molecular biology of colon cancer 8.2.1 Adenoma–carcinoma sequence 8.2.2 Genetic mutations 8.2.3 Biomarkers 8.2.3.1 Diagnostic biomarkers 8.2.3.1.1 Genomic instability: an evolving hallmark of colon cancer (a) Chromosomal instability (b) Microsatellite instability 8.2.3.1.2 Insulin-like growth factor binding protein 2 8.2.3.1.3 Pyruvate kinase M2 8.2.3.1.4 Telomerase 8.2.3.2 Predictive biomarkers 8.2.3.2.1 B-Raf proto-oncogene serine/threonine kinase (BRAF) 8.2.3.2.2 Kirstein rat sarcoma 8.2.3.2.3 Ezrin 8.2.3.2.4 DNA base excision repair genes 8.2.3.2.5 PTEN 8.2.3.3 Prognostic biomarkers 8.2.3.3.1 Adenomatous polyposis coli 8.2.3.3.2 Tumor protein-53 8.2.3.3.3 Deleted in colon cancer [loss of heterozygosity (18q)] 8.2.3.3.4 SMAD4 8.2.3.3.5 Epidermal growth factor receptor 8.2.3.3.6 Vascular endothelial growth factor 8.2.3.3.7 Aberrant DNA methylation 8.2.3.3.8 BAX 8.3 Conventional treatment options for colon cancer and their limitations 8.3.1 Surgical resection 8.3.2 Radiation therapy 8.3.3 Chemotherapy 8.3.4 Targeted therapy 8.3.5 Immunotherapy 8.4 Nanoparticles: the modern trends in the treatment of colon cancer 8.4.1 pH-responsive nanoparticles 8.4.2 Liposomes 8.4.3 Polymeric nanoparticles 8.4.3.1 Nanocapsules 8.4.3.2 Nanospheres 8.4.4 Solid lipid nanoparticles 8.4.5 Metallic nanoparticles 8.4.6 Magnetic nanoparticles 8.4.7 Viral nanoparticles 8.4.8 Polymeric micelles 8.4.9 Hydrogel 8.4.10 Polymerosomes 8.4.11 Carbon nanotubes 8.5 Conclusion Acknowledgment Conflict of interest References 9 Treating blood cancer with nanotechnology: A paradigm shift 9.1 Introduction 9.2 Cancer statistics 9.3 Blood cancer 9.4 Types of blood cancer 9.5 Pathophysiology of blood cancer 9.6 Therapies for blood cancer 9.6.1 Gene therapy 9.6.2 Chemotherapy 9.6.3 Immunotherapy 9.6.4 Radiation therapy 9.6.5 Advancements in blood cancer treatment 9.7 Nanotechnology in treatment of cancer 9.7.1 Nanoparticles 9.7.2 Drug–protein conjugation 9.7.3 Liposomes 9.7.4 Polymeric nanoparticles 9.7.5 Dendrimeric nanoparticles 9.7.6 Quantum dots 9.7.7 Carbon nanotubes 9.7.8 Metal nanoparticles 9.7.9 Silver nanoparticles 9.7.10 Gold nanoparticles 9.7.11 Mesoporous silica nanoparticles 9.7.12 Properties of nanocarriers 9.8 Challenges and remedies in the treatment of leukemia 9.8.1 Challenges 9.8.2 Biological barriers 9.8.3 Reticuloendothelial system 9.8.4 Renal system 9.8.5 Remedies 9.9 Diagnosis of blood cancer 9.9.1 Current theranostic approach 9.9.2 Recent and ongoing clinical trials 9.10 Regulation aspects of nanotechnology-based tools References 10 Nanoparticles and skin cancer 10.1 Introduction 10.2 Classification of skin cancer 10.2.1 Nonmelanoma skin cancer 10.2.2 Malignant melanoma 10.3 Pathogenesis of skin cancer 10.3.1 Ultraviolet radiation 10.3.2 Immunosuppression and organ transplant recipients 10.3.3 Human papillomavirus 10.4 Detection of skin cancer 10.5 Skin cancer treatment modalities 10.5.1 Curettage and electrodesiccation 10.5.2 Cryotherapy 10.5.3 Photodynamic therapy (PDT) 10.5.4 Radiation therapy 10.5.5 Hedgehog pathway inhibitors 10.5.6 Nonbiologics 10.5.7 Synthetic chemotherapeutic agents 10.5.7.1 Doxorubicin 10.5.7.2 5-Fluorouracil 10.5.7.3 Bleomycin 10.5.7.4 Cisplatin 10.5.7.5 Mitoxantrone 10.5.7.6 Imiquimod 10.5.8 Natural-origin bioactives 10.5.8.1 Curcumin 10.5.8.2 Tea polyphenols 10.5.8.3 Trehalose 10.5.8.4 Diallyl sulfide 10.5.8.5 Aloe-emodin 10.5.8.6 Luffin 10.5.8.7 Glycans 10.5.9 Photosensitizers 10.5.9.1 5-Amino levulinic acid 10.5.9.2 Temoporfin 10.5.9.3 Zinc phthalocyanine 10.5.10 Miscellaneous products 10.5.10.1 Tretinoin 10.5.10.2 Celecoxib (diaryl heterocycle) 10.5.11 Biologics 10.5.11.1 DNA repair enzymes 10.5.11.1.1 Photolyase 10.5.11.1.2 T4 endonuclease V (dimericine) 10.6 Nanocarriers as a potential tool for effective treatment of skin cancer 10.6.1 Nanoparticles 10.6.1.1 Polymeric nanoparticles 10.6.1.2 Metallic nanoparticles 10.6.1.3 Lipid nanoparticles 10.6.1.3.1 Solid-lipid nanoparticles 10.6.1.3.2 Nanostructured lipid carriers 10.7 Conclusion References 11 Nanoparticles and prostate cancer 11.1 Introduction 11.1.1 Cancer 11.1.2 Prostate gland and prostate cancer 11.2 Nanotechnology 11.3 Drug delivery 11.3.1 Drug targeting toward tumor cells 11.3.2 Active and passive targeting 11.4 Routes of drug delivery to the prostate 11.4.1 Systemic route 11.4.2 Locoregional route 11.4.2.1 Intraprostatic route 11.4.2.2 Vas deferens 11.4.2.3 Transrectal 11.5 Classification of nanoparticle systems for prostate targeting 11.5.1 Liposomal nanoparticles in prostate cancer 11.5.2 Albumin-bound system 11.5.3 Polymeric nanoparticle systems for cancer treatment 11.5.4 Carbon-based system 11.5.5 Dendrimeric platform 11.5.6 Quantum dot device 11.5.7 Gold nanoparticulate system 11.5.8 Metallic nanoparticle platform 11.5.9 Nanocolloidal 11.6 Treatment for prostate cancer: nanotechnology and prostate cancer 11.6.1 Nanochemoprevention of prostate cancer 11.6.2 Treatment of prostate cancer via gene delivery with nanomaterials 11.6.3 Treatment of prostate cancer via cancer immunotherapy with nanomaterials 11.7 Nanotechnology approach and prostate cancer diagnosis 11.7.1 Nanotechnologies for fluorescence diagnosis of prostate cancer 11.7.2 Targeted prostate-specific antigen nanoprobe for imaging prostate cancer 11.7.3 Targeted prostate-specific membrane antigen nanoprobes for imaging prostate cancer 11.8 Conclusion References 12 Nanomedicine-based multidrug resistance reversal strategies in cancer therapy 12.1 Introduction 12.2 Multidrug resistance in cancer therapy: a brief account 12.3 Mechanisms of multidrug resistance in cancer cells 12.3.1 Overexpression of P-glycoprotein efflux proteins 12.3.2 Xenobiotics 12.3.3 Tumor suppressor genes 12.3.4 Hypoxia 12.3.5 Autophagy 12.4 Novel strategies to combat multidrug resistance in cancer therapy 12.5 Nanomedicine-based multidrug resistance reversal strategies 12.6 Multidrug resistance in cancer therapy: the case of doxorubicin 12.7 Multidrug resistance reversal of doxorubicin-loaded nanomedicines 12.7.1 Nanomedicine coloaded with small interfering RNA and doxorubicin 12.7.2 Nanomedicine coloaded with P-gp efflux inhibitors and doxorubicin 12.7.3 Nanomedicine coloaded with d-α-tocopherol polyethylene glycol 1000 succinate and doxorubicin 12.7.4 Miscellaneous approaches 12.8 Conclusion 12.8.1 Grant support Abbreviations References Index Back Cover