دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Firdos Alam Khan (editor)
سری:
ISBN (شابک) : 9819969395, 9789819969395
ناشر: Springer
سال نشر: 2024
تعداد صفحات: 264
[259]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 9 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Nano Drug Delivery for Cancer Therapy: Principles and Practices به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تحویل نانو دارو برای درمان سرطان: اصول و شیوه ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب روشها و روشهای مختلف دارورسانی مبتنی بر نانو را در انواع مختلف سرطانها مانند سرطان روده بزرگ، سینه، دهانه رحم، تخمدان و ریه مورد بحث قرار میدهد. این مقاله اهمیت تحویل نانو دارو در درمان سرطان، کاربرد نانوذرات در غلبه بر مقاومت دارویی، درمان هدفمند و ایمونوتراپی را بررسی میکند. این کتاب همچنین موضوعات مربوط به سنتز انواع، اشکال و اندازه های مختلف نانوحامل ها را با استفاده از رویکردهای مصنوعی و بیولوژیکی پوشش می دهد. علاوه بر این، یک فصل به بررسی سنتز نانوحاملهای بارگیری شده با داروهای ضد سرطان با استفاده از روشهای عاملسازی یا کونژوگاسیون و کپسولهسازی میپردازد. این کتاب همچنین نانوحاملها را بهعنوان وسیلهای برای انتقال عوامل شیمیدرمانی در برابر سرطانها با استفاده از مدلهای آزمایشگاهی و حیوانی سرطانها، آزمایشهای بالینی برای اثربخشی، و پروفایل ایمنی نانوحاملها بررسی میکند. در نهایت، روندهای آینده و نوآوری در تحویل نانو دارو برای درمان سرطان، استفاده از درمان siRNA (RNA مبتنی بر نانوذرات)، درمانهای نانو سرطان مرتبط با اولتراسوند، و استفاده از موضوعات درمانی سرطان مبتنی بر اگزوزوم مورد بحث قرار میگیرد. در پایان، این کتاب محدودیتهای نانوحاملها، از جمله سمیت سلولی و بافتی، سمیت ژنی، و افزایش مقیاس نانومواد، خطرات بهداشتی و زیستمحیطی مرتبط با سنتز فرمولاسیون نانو، بیماریهای تنفسی، مقررات دولتی و مسائل اخلاقی را بررسی میکند.
This book discusses the various modes and methods of nano-based drug delivery in different types of cancers such as colon, breast, cervical, ovarian, and lung cancer. It reviews the significance of nano drug delivery in cancer therapy, the application of nanoparticles in overcoming drug resistance, targeted therapy, and immunotherapy. The book also covers topics related to the synthesis of different types, shapes, and sizes of nanocarriers using synthetic and biological approaches. Further, a chapter explores the synthesis of nanocarriers loaded with anti-cancer drugs by using functionalization or conjugations and encapsulation methods. The book also examines the nanocarriers as delivery vehicles for chemotherapeutic agents against cancers using in vitro and animal models of cancers, preclinical trials for efficacy, and safety profiling of nanocarriers. Finally, future trends and innovation in nano drug delivery for cancer therapy, application of siRNA (nanoparticle-based RNA) therapy, ultrasound-linked nano-cancer therapeutics, and application of exosome-based cancer therapy topics are discussed. Towards the end, the book examines the limitations of nanocarriers, including the cell and tissue toxicity, genotoxicity, and scale-up of nanomaterials, health and environmental hazards associated with nanoformulation synthesis, respiratory diseases, government regulations, and ethical issues.
Preface About the Book Contents Editor and Contributors 1: Significance of Nano-drug Delivery in Cancer Therapy, Application of Nanoparticles in Overcoming Drug Resistance, Targeted ... 1.1 Introduction 1.2 Overview History of Nanotechnology and Nanoparticles 1.3 Significance of Nano-Based Carriers Carrying Anticancer Agents 1.4 Various Types of Nanoparticles Are Used in Drug Delivery Systems 1.5 Organic Nanoparticles 1.5.1 Liposomes 1.5.2 Dendrimers 1.5.3 Carbon Nanoparticles and Nanotubes 1.5.4 Polymeric Nanocarriers 1.5.5 Polymeric Micelles 1.5.6 Polymeric Nanoparticles 1.5.7 Inorganic Nanoparticles 1.5.8 Gold NPs 1.5.9 Iron Oxide NPs 1.5.10 Silica NPs 1.5.11 Magnetic Nanoparticles 1.5.12 Quantum Dots 1.5.13 Hybrid Nanoparticles 1.6 Application of Nanocarriers in Drug Resistance to Cancer 1.6.1 Application of Nanoparticles in Overcoming Drug Resistance 1.6.2 Application of Nanoparticles in Targeted Therapy 1.6.3 Application of Nanoparticles in Immunology 1.6.4 Mechanisms of Nanocarriers in Overcoming Drug Resistance Problems 1.6.4.1 Enhanced Permeability and Retention (EPR) Effect 1.6.4.2 Passive and Active Targeting 1.6.4.3 Multidrug Resistance (MDR) Modulation 1.6.4.4 Co-delivery of Multiple Drugs 1.6.4.5 Controlled Drug Release 1.7 The Role of Nanoparticles in Immunotherapy 1.7.1 Nanoparticles as the Carrier of Immunotherapeutic Agents 1.7.2 Antigens and Adjuvants Delivery to Antigen-Presenting Cells (APCs) 1.7.3 Antigens and Adjuvants Delivery to Tumor Microenvironment (TME) 1.7.4 Nanoparticles as the Direct Immunomodulators 1.7.5 Targeting Dendritic Cells 1.8 Conclusion and Future Perspectives References 2: Synthesis of Different Types, Shapes, and Sizes of Nanocarriers Using Synthetic and Biological Approaches 2.1 Nanomaterials Synthesis Methods 2.1.1 0D Nanomaterials 2.1.1.1 Metal NPs 2.1.1.1.1 Co-precipitation Method 2.1.1.1.2 Polyol Method 2.1.1.1.3 Green Synthesis 2.1.1.2 Metal Oxide NPs 2.1.1.2.1 Sol-Gel Method 2.1.1.2.2 Solvothermal/Hydrothermal Method 2.1.1.2.3 Co-precipitation Method 2.1.1.2.4 Combustion Method 2.1.1.2.5 Sonochemical Synthesis 2.1.1.2.6 Green Synthesis 2.1.1.3 Polymeric NPs 2.1.1.3.1 Microemulsion Method 2.1.2 1D Nanomaterials 2.1.2.1 Template Synthesis Method 2.1.3 2D Nanomaterials 2.1.4 3D Nanomaterials References 3: Synthesis of Nanocarriers Loaded with Anti-Cancer Drugs by Using Functionalization or Conjugations, Encapsulation Methods 3.1 Introduction 3.1.1 Functionalized Graphene Oxide 3.1.1.1 Conjugation and Functionalization of Graphene Oxide Based Nanocarriers References 4: Nano-Drug Carriers for Chemotherapeutic Agents Delivery in Cancer Disease Treatment 4.1 Introduction 4.2 Lipid-Based Nanotherapy 4.2.1 Solid Lipid Nanoparticles 4.2.2 Liposomes 4.2.3 Lipid Emulsions 4.3 Carbon-Based Nanotherapy 4.3.1 Carbon Nanotubes/Carbon Nanofibers 4.3.2 Carbon Dots 4.4 Dendrimers Based Nanotherapy 4.5 Protein-Based Nanotherapy 4.6 Synthetic Polymer-Based Nanotherapy 4.6.1 PLGA Nanoparticles 4.6.2 PLA and PBCA Nanoparticles 4.7 Metal-Based Nanotherapy 4.7.1 Mesoporous Silica Nanoparticles (MSNs) 4.7.2 Iron Oxide Nanoparticles 4.7.3 Zinc Oxide Nanoparticles 4.7.4 Inert Metals Nanoparticles 4.8 Combinatorial Nanoparticles 4.9 Conclusion 4.10 Future Perspectives References 5: Testing of Nanocarriers Loaded with Chemotherapeutic Agents in the Animal Models of Cancers: Preclinical Trials for Efficac... 5.1 Cancer 5.1.1 Historical Turning Points in Cancer 5.1.2 Treatment of Cancer 5.1.3 Introduction to Nanotechnology 5.2 Applications of Nanotechnology 5.2.1 Nanomaterials Used for Cancer Therapy 5.2.1.1 Polymeric Nanoparticles 5.2.1.2 Lipid-Based Nanomaterials 5.2.1.3 Nanoemulsions 5.2.1.4 Carbon Nanoparticles 5.2.2 Use of Nanocarriers in Cancer Therapy 5.2.3 Opportunities and Challenges of Nanoparticles for Cancer Therapy 5.3 Preclinial Testing of Nanocarriers 5.3.1 Uses of Animal Model 5.3.2 Various Animal Models Employed in Cancer Models 5.3.2.1 Canine Cancer Models 5.3.2.2 Patient-Derived Xenograft (PDX) Model 5.3.2.3 Mouse Models 5.3.2.4 Transgenic Mouse Models (of Breast Cancer): The MMTV Paradigm 5.3.2.5 Zebrafish Model 5.4 Hu-PBL Model 5.5 Toxicities of Nanocarriers 5.6 Safety Profiling of Nanoparticles 5.6.1 Importance of Safety Profiling 5.6.2 Current Methods of Safety Profiling 5.6.3 Challenges and Limitations 5.6.4 Future Directions References 6: Testing of Nanocarriers Loaded with Chemotherapeutic Agents: Cancer Patients and Clinical Trials 6.1 Clinical Trials and Different Phases 6.2 Application of Nanocarriers in Anticancer Drug Delivery 6.2.1 Poly (Lactic-Co-Glycolic Acid) (PLGA) Nanocarriers 6.2.2 Magnetic Nanoparticle-Based Nanocarriers 6.2.3 Plant-Based Nanocarriers 6.3 Clinical Trials of Nano-Based Formulation for Cancer Diagnosis and Therapy-Completed Trials 6.4 FDA Approved Nano-Based Materials for Cancer 6.4.1 Polymer Nanoparticles-Synthetic Polymer Particles Combined with Drugs or Biologics 6.4.2 Liposome Formulations Combined with Drugs or Biologics 6.4.3 Micellar Nanoparticles Combined with Drugs or Biologics 6.4.4 Nanocrystals 6.5 Conclusion References 7: Nanocarriers-Based Products in the Market, FDA Approval, Commercialization of Nanocarriers, and Global Market 7.1 Commercialization of Nanomedicine Products 7.2 Process of Commercialization Nanomedicine Products 7.2.1 Identification of Problem 7.2.2 Finding Solution 7.2.3 Research and Invention 7.2.4 Disclosure of Invention 7.2.5 Assessment of Invention 7.2.6 Issuing of Patent 7.2.7 Licensing of Patented Technology 7.2.8 Preclinical and Clinical Trials 7.2.9 Approval of the Product 7.2.10 Marketing of Product 7.3 Nanomaterials as Commercial Products 7.4 Global Market of Nanomedicine Products 7.4.1 Market Classification of Nanomedicine Products 7.4.2 Leading Players in Nanomedicine Market 7.5 Nanomedicine for Cancer Therapy References 8: Limitations of Nanocarriers Such as Cell and Tissue Toxicity, Genotoxicity, Scale-Up of Nanomaterials 8.1 Introduction 8.2 Nanomaterials and Their Biomedical Applications 8.3 Limitations Faced by Drug Loaded Nanocarriers 8.3.1 Immune System (IS) and Nanocarriers 8.3.1.1 Innate Immune System 8.3.1.2 Adaptive Immune System 8.3.2 Blood-Brain Barrier (BBB) 8.4 Toxicity of Nanocarriers 8.4.1 Cellular Toxicity of Nanocarriers 8.4.2 Gene Toxicity 8.4.3 Accumulation in Organs 8.5 Scale-Up of Nanocarriers 8.6 Conclusion References 9: Health and Environmental Hazards Associated with the Synthesis of Nanomaterials-Respiratory Diseases, Government Regulation... 9.1 Introduction 9.2 Types of Nanoparticles 9.3 Harmful Effects of Nanomaterials 9.4 Impact of Nanomaterials-Induced Toxicity 9.5 Methods of Evaluating Nanomaterial-Induced Toxicities 9.5.1 In Vitro Method of Testing 9.5.2 In Vivo Method of Testing 9.6 Reduction of Nanoparticles Toxicity 9.7 Nanomaterials and Regulations for Preventing Health Hazards References 10: Future Trends and Innovation in Nano Drug Delivery for Cancer Therapy, Application of siRNA (Nanoparticle-Based RNA) Thera... 10.1 Introduction 10.2 NPs in Cancer Therapy 10.3 NPs Used for Drug Delivery in Cancer Therapy 10.3.1 Inorganic NPs for Drug Delivery in Cancer Therapy 10.3.1.1 Liposomes 10.3.1.2 Polymeric Nanoparticles 10.3.1.3 Peptides and Protein Nanoparticles 10.3.2 Micelles NPs 10.3.3 Self-Assembled Drug NPs 10.4 Targeted Drug Delivery 10.4.1 Passive Targeting 10.4.1.1 Limitations in Passive Targeting 10.4.2 Active Targeting 10.4.3 Targeting to Cancer Cells 10.4.3.1 Epidermal Growth Factor Receptor (EGFRs)-Based Active Targeting 10.4.3.2 Transferrin (Tf) Receptor-Mediated Active Targeting 10.4.3.3 Estrogen Receptor-Mediated Active Targeting 10.4.3.4 Cluster of Differentiation (CD) Receptor-Mediated 10.4.3.5 Folate Receptor (FR)-Mediated Active Targeting 10.4.3.6 Glycoproteins-Mediated Active Targeting Systems 10.4.3.7 Other Receptor-Mediated Active Targeting Systems 10.4.4 Targeting to Endothelium 10.5 Stimuli-Responsive Targeting Strategies 10.5.1 Endogenous Stimuli 10.5.1.1 pH-Responsive Targeting Strategies 10.5.1.2 Redox-Responsive Targeting Strategies 10.5.1.3 Enzyme-Responsive Targeting Strategies 10.5.1.4 Hypoxia-Responsive Targeting Strategies 10.5.1.5 ATP-Responsive Targeting Strategies 10.5.1.6 Tumor-Metabolite Responsive Targeting Strategies 10.5.2 Exogenous Stimuli 10.5.2.1 Temperature Stimuli-Responsive Targeting Strategies 10.5.2.2 Magnetic Stimuli-Responsive Targeting Strategies 10.5.2.3 Light Stimuli-Responsive Targeting Strategies 10.5.2.4 Ultrasound Stimuli-Responsive Targeting Strategies 10.6 Stimuli-Responsive Gene Delivery Nanocarriers for Cancer Therapy 10.7 Application of siRNA (Nanoparticle-Based RNA) Cancer Therapy 10.7.1 Introduction 10.7.2 Difficulties in siRNA Delivery 10.7.2.1 Physiological Barriers 10.7.2.2 Cell Membrane 10.7.2.3 Stability 10.7.2.4 Off-Target Effects 10.7.3 Applications of Nanocarriers for siRNA Delivery 10.7.4 Nanocarriers for Co-delivery of siRNA with Anticancer Drug 10.7.5 Clinical Applications of siRNA-Based Nanotherapies 10.7.6 Current Challenges and Opportunities 10.7.7 Design Concerns for Future Development of RNAi-Mediated Anticancer Nanotherapeutics 10.8 Ultrasound Linked Nano-cancer Therapeutics 10.8.1 Introduction 10.8.2 Ultrasound Parameters Used for Cancer Therapy 10.8.3 Ultrasound Interactions with Nanoparticles 10.8.4 Types of Ultrasound-Sensitive Materials and Nanoparticles 10.9 Exosomes as Anticancer Drug Delivery Vehicles 10.9.1 Introduction 10.9.2 Biogenesis and Uptake of Exosomes 10.9.3 The Sources of Exosomes 10.9.4 Isolation of Exosomes 10.9.4.1 Ultracentrifugation 10.9.4.2 Ultrafiltration 10.9.4.3 Size Exclusion Chromatography (SEC) 10.9.4.4 Flow Field-Flow Fractionation (F4) 10.9.4.5 Hydrostatic Filtration Dialysis (HFD) 10.9.4.6 Polymer-Based Precipitation 10.9.4.7 Immunoaffinity Capture-Based Technology 10.9.4.8 Microfluidic-Based Exosome Isolation 10.9.5 Drug Loading on Exosomes 10.9.5.1 Presecretory Drug Loading 10.9.5.1.1 Co-Incubation (Drug and Cells) 10.9.5.1.2 Transfection 10.9.5.2 Post Secretory Drug Loading 10.9.5.2.1 Electroporation 10.9.5.2.2 Sonication 10.9.5.2.3 Freeze-Thaw Cycle 10.9.5.2.4 Extrusion 10.9.5.2.5 Co-Incubation (Drugs and Exosomes) 10.9.5.2.6 Surfactant Treatment 10.9.5.2.7 Dialysis 10.9.6 Exosomes Applications in Cancer Treatment 10.9.6.1 Small Molecule Chemotherapy Drugs 10.9.6.2 Therapeutic Nucleic Acid 10.9.6.3 Other Therapeutic Compounds 10.9.7 Targeted Delivery of Exosomes 10.10 Conclusion References