دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 & 2] نویسندگان: Pang W., DeLuca L.T. (ed.) سری: ISBN (شابک) : 9783527352067 ناشر: WILEY-VCH سال نشر: 2023 تعداد صفحات: 760 [761] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 17 Mb
در صورت تبدیل فایل کتاب Nano and Micro-Scale Energetic Materials: Propellants and Explosives به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مواد پرانرژی نانو و در مقیاس میکرو: پیشران ها و مواد منفجره نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
گزارشی به روز از مواد پرانرژی نوآورانه و کاربردهای بالقوه آنها در رانش فضایی و مواد منفجره قوی ارائه می دهد. اکثر مواد منفجره و پیشرانه ها در حال حاضر از تعداد کمی از مواد مانند TNT و نیتروسلولز استفاده می کنند. در مقایسه با مواد معمولی، مواد پرانرژی در مقیاس نانو و میکرو ویژگیهای سوزاندن عالی و چگالی انرژی و بازده انفجاری بسیار بالاتری از خود نشان میدهند. مواد پرانرژی در مقیاس نانو و میکرو: پیشرانهها و مواد منفجره یک مرور کلی به موقع از مواد انرژیزا در مقیاس نانو (nEMs) و فناوری مواد انرژیزا در مقیاس میکرو (µEMs) ارائه میدهند. این جلد جامع با پوشش مواد تشکیل دهنده nEM و μEMs و همچنین فرمولاسیون، آماده سازی، خصوصیات، احتراق، احتراق و عملکرد مواد پر انرژی را در کاربردهای مختلف پیشران ها و مواد منفجره بررسی می کند. بیست و دو فصل به بررسی نانوکامپوزیتهای پیروتکنیک مبتنی بر فلز، پیشرانه موشکهای جامد و هیبریدی، سوختهای جامد در فضا و قدرت، حساسیت و خواص مکانیکی مواد منفجره، مواد پرانرژی جدید و موارد دیگر میپردازد. مواد پرانرژی جدید و پتانسیل آنها برای استفاده در پیشرانه ها و مواد منفجره را بررسی می کند آخرین پیشرفتهای گروههای تحقیقاتی پیشرو در حال حاضر فعال در دوازده کشور را خلاصه میکند بحث می کند که چگونه مواد جدید سازگار با محیط زیست و با احتراق بالا می توانند در کاربردهای مختلف به بهترین شکل استفاده شوند. اصول مواد پرانرژی، از جمله شباهت ها و تفاوت های بین پیشرانه های کامپوزیت و مواد منفجره را توضیح می دهد. مواد پرانرژی در مقیاس نانو و میکرو: پیشرانه ها و مواد منفجره منبع مهمی برای دانشمندان مواد، متخصصان مواد منفجره، پیروتکنسین ها، شیمیدانان محیط زیست، شیمی دانان پلیمر، شیمی دانان فیزیک، پزشکان هوافضا و مهندسان هوافضا هستند که هم در دانشگاه و هم در صنعت کار می کنند.
Provides an up-to-date account of innovative energetic materials and their potential applications in space propulsion and high explosives Most explosives and propellants currently use a small number of ingredients, such as TNT and nitrocellulose. In comparison to conventional materials, nano- and micro-scale energetic materials exhibit superior burning characteristics and much higher energy densities and explosive yields. Nano and Micro-scale Energetic Materials: Propellants and Explosives provides a timely overview of innovative nano-scale energetic materials (nEMs) and microscale energetic materials (µEMs) technology. Covering nEMs and µEMs ingredients as well as formulations, this comprehensive volume examines the preparation, characterization, ignition, combustion, and performance of energetic materials in various applications of propellants and explosives. Twenty-two chapters explore metal-based pyrotechnic nanocomposites, solid and hybrid rocket propulsion, solid fuels for in-space and power, the sensitivity and mechanical properties of explosives, new energetic materials, and more. Explores novel energetic materials and their potential for use in propellants and explosives Summarizes the most recent advances of leading research groups currently active in twelve countries Discusses how new environmentally friendly, high-combustion energetic materials can best be used in different applications Explains the fundamentals of energetic materials, including similarities and differences between composite propellants and explosives Nano and Micro-scale Energetic Materials: Propellants and Explosives is an important resource for materials scientists, explosives specialists, pyrotechnicians, environmental chemists, polymer chemists, physical chemists, aerospace physicians, and aerospace engineers working in both academia and industry.
Cover Half Title Nano and Micro-Scale Energetic Materials: Propellants and Explosives. Volume 1 Nano and Micro-Scale Energetic Materials: Propellants and Explosives. Volume 2 Copyright Contents Volume 1 Volume 2 Preface About the Editors Volume 1 Part I. Fundamentals 1. Composite Heterogeneous Energetic Materials: Propellants and Explosives, Similar but Different? 1.1 Introduction 1.2 Structure and Composition 1.2.1 Energetic Fillers 1.2.2 Binder Systems 1.2.2.1 Binder Systems for Cast Cure Propellants and Explosives 1.2.2.2 Pressed PBXs 1.2.2.3 Plasticizers 1.2.3 Surface Active Materials (SAMs) 1.3 Performance 1.4 Sensitivity 1.4.1 Sensitivity Correlations 1.4.2 Transfer to Detonation in Propellants and PBXs 1.4.2.1 Factors Determining Transfer to Detonation 1.4.2.2 DDT Description 1.5 Summary List of Abbreviations References 2. High-Pressure Combustion Studies of Energetic Materials 2.1 Introduction 2.2 Burning Rates as a Function of Pressure 2.3 Visual Observations of Burning Behavior as a Function of Pressure 2.5 Conclusions Acknowledgments References Part II. New Energetic Ingredients 3. Cyclic Nitramines as Nanoenergetic Organic Materials 3.1 Introduction 3.2 Nanosized RDX 3.3 Nanosized HMX 3.4 Nanosized CL-20 3.4.1 Ultrasound- and Spray-Assisted Precipitation of Ultrafine CL-20 3.4.2 Preparation of CL-20 Nanoparticles Via Oil in Water Microemulsions 3.4.3 Production of Nanoscale CL-20 Using Ultrasonic Spray-Assisted Electrostatic Adsorption Method (USEA) 3.4.4 Preparation of Nano CL-20 Via Sonocrystallization 3.4.5 Preparation of Micro-Sized Particles and their Comparison with Nanoscale CL-20 3.4.6 Method for Production of Nano CL-20 in Supercritical CO2 and 1,1,1,2-Tetrafluoroethane (TFE) 3.4.7 Creation of Nano CL-20 Particles by the Method of Bidirectional Rotary Mill 3.4.8 Electrospray of CL-20 Particles 3.4.9 Production of Sub-Micro CL-20-Based Energetic Polymer Composite Ink 3.4.10 Nanoscale Composites Based on CL-20 3.4.11 Comparison of the Detonation Performance of Micro−/Nanoscale High-Energy Materials 3.4.12 Preparation of Nano-Sized CL-20/NQ Co-Crystal Via Vacuum Freeze Drying 3.4.13 Nanoscale 2CL-20⋅HMX High Explosive Cocrystal Synthesized by Bead Milling 3.4.14 Mechanochemical Fabrication and Properties of CL-20/RDX Nano Co/Mixed Crystals 3.4.15 Preparation of Nano CL-20/HMX Cocrystal by Milling Method 3.4.16 Synthesis of Nano CL-20/HMX Co-Crystals by Ultrasonic Spray-Assisted Electrostatic Adsorption Method 3.4.17 Preparation of Nano-CL-20/TNT Cocrystal Explosives by Mechanical Ball-Milling Method 3.4.18 Preparation of Nanoscale CL-20/Graphene Oxide by One-Step Ball Milling 3.4.19 Preparation and Properties of CL-20 Based Composite by Direct Ink Writing 3.4.20 CL-20 Based Explosive Ink of Emulsion Binder System for Direct Ink Writing 3.5 Conclusions and Future Outlook Declaration of Originality References 4. Clathrates of CL-20: Thermal Decomposition and Combustion 4.1 Introduction 4.2 Host–guest Energetic Material Based on CL-20 and Nitrogen Oxides 4.2.1 Synthesis and Determination of the Structure of New Clathrates 4.2.2 Thermal Stability of the New Clathrates 4.2.3 Vapour Pressure Above the New Clathrates 4.2.4 Combustion Behaviors of the New Clathrates 4.2.5 Energetic Performance of the New Clathrates 4.3 Conclusion Remarks Acknowledgments References 5. HMX and CL-20 Crystals Containing Metallic Micro and Nanoparticles 5.1 Introduction 5.2 Research on High-Energy Cyclic Nitramines HMX and CL-20 5.2.1 Synthesis of HMX and CL-20 Crystals with Inclusion of Metal Particles 5.3 Production of Cyclic Nitramine Crystals with Metal Inclusions 5.3.1 Production of CL-20 Crystals with Metal Inclusions 5.3.2 Production of HMX Crystals with Metal Inclusions 5.4 Research on the Physicochemical and Explosive Characteristics of CL-20 and HMX Crystals with Metal Inclusions 5.5 Research on the Combustion of Fuel Samples Based on CL-20 Crystals with Metal Inclusions 5.6 Conclusions Funding Acknowledgments References 6. Effects of TKX-50 on the Performance of Solid Propellants and Explosives 6.1 Introduction 6.2 Physicochemical Properties of TKX-50 6.3 Interactions Between TKX-50 and EMs 6.3.1 TKX-50/EMs Co-crystals 6.3.2 TKX-50/EMs Mixtures 6.4 Performance of Nano-sensitized TKX-50 6.5 Application in Solid Propellants 6.5.1 Ideal Energetic Performance 6.5.1.1 HTPB/TKX-50 6.5.1.2 GAP/TKX-50 6.5.1.3 NEPE/TKX-50 System 6.5.1.4 CMDB/TKX-50 System 6.5.2 Combustion Features 6.5.2.1 Combustion Behavior of TKX-50 6.5.2.2 Combustion Behavior of Solid Propellants Containing TKX-50 6.5.3 Thermal Decomposition 6.6 Application in Explosives 6.7 Conclusions References Part III. Metal-based Pyrotechnic Nanocomposites 7. Recent Advances in Preparation and Reactivity of Metastable Intermixed Composites 7.1 Introduction 7.2 The Preparation and Reactivity Control of MICs 7.2.1 Al-Based MICs with Random Distributed Structures 7.2.1.1 Preparation Methods 7.2.1.2 Characterization 7.2.1.3 Reactivity Control 7.2.2 Al-Based MICs with Multilayered Structures 7.2.2.1 Preparation Methods 7.2.2.2 Characterization 7.2.2.3 Reactivity Control 7.2.3 Al-Based MICs with Core–Shell Structures 7.2.3.1 Preparation Methods 7.2.3.2 Characterization 7.2.3.3 Reactivity Control 7.3 Conclusion and Suggestions References 8. Nanothermites: Developments and Future Perspectives 8.1 Introduction 8.2 Nanothermites Versus Microthermites 8.3 Nanothermite-friendly Oxidizers 8.3.1 Metallic Oxidizers 8.3.2 Oxidizing Salts 8.4 Carbon Nanomaterials and Energetic Compositions 8.5 Future Challenges 8.6 Conclusion References 9. Engineering Particle Agglomerate and Flame Propagation in 3D-printed Al/CuO Nanocomposites 9.1 Introduction 9.2 Printing High Nanothermite Loading Composite Via a Direct Writing Approach 9.3 Agglomerating in High Al/CuO Nanothermite Loading Composite 9.3.1 In-Operando Observation of Flame Front 9.3.2 Mapping Optical to Electron Microscopy of Agglomeration 9.3.3 Agglomeration Affects the Propagation Rate 9.4 Engineering Agglomerating and Propagating through Oxidizer Size and Morphology 9.4.1 The Concept of a Pocket Size 9.4.2 Reducing Agglomeration with CuO Wires 9.4.3 Promote Propagating through Using CuO Wires 9.4.4 Polymer Addition Significantly Reduces the Micro-Explosion of the Agglomerations 9.4.5 Summary 9.5 Engineering Agglomeration and Propagating through Restraining the Movement of Agglomerations 9.5.1 Adding Carbon Fibers to Promote Energy Release Rate in Energetic Composites 9.5.2 Embedding Carbon Fibers into High Loading Al/CuO Nanothermite Composite 9.5.3 Enhanced Propagation of Al/CuO Composite with Carbon Fibers 9.5.4 Enhanced Heat Feedback and Heat Transfer with Carbon Fibers: Restraining the Movement of Agglomerations 9.5.5 Summary 9.6 Conclusions and Future Directions Acknowledgments References Part IV. Solid Propellants and Fuels for Rocket Propulsion 10. Glycidyl Azide Polymer Combustion and Applications Studies Performed at ISAS/JAXA 10.1 Introduction 10.2 Combustion Mechanism 10.2.1 Simplified Model by Asymptotic Analysis [47] 10.2.2 Three Phase-One Dimensional Full Kinetics Model [49, 50] 10.3 Application of GAP to Gas Hybrid Rocket Motor [2, 51–53] 10.4 Summary References 11. Effect of Different Binders and Metal Hydrides on the Performance and Hydrochloric Acid Exhaust Products Scavenging of AP-Based Composite Solid Propellants: A Theoretical Analysis Nomenclature 11.1 Introduction 11.2 Theoretical Background and Computation Procedure 11.2.1 Performance of Composite Solid Propellants 11.2.2 Propellant Energetic Ingredients 11.2.3 Computation Procedure of CSPs Performance 11.3 Results and Discussion 11.4 Conclusion References 12. Combustion of Flake Aluminum with PTFE in Solid and Hybrid Rockets* 12.1 Introduction 12.1.1 Solid Rockets 12.1.1.1 Need for High Burn Rates in Solid Rockets 12.1.2 Hybrid Rockets 12.2 Aluminum Combustion in Composite Solid Propellant 12.2.1 Literature on Aluminum Combustion 12.3 Effect of Mechanical Activation in Composite Solid Propellants 12.3.1 Experiments with Solid Propellants 12.3.1.1 Preparation of Mechanically Activated Pyral 12.3.1.2 Preparation of Propellants 12.3.1.3 Experimental Setup 12.3.1.4 Experimental Procedure 12.3.2 Results and Discussions on Solid Rockets 12.3.2.1 Chemical Equilibrium Analysis 12.3.2.2 DSC and TG Analysis of Mechanically Activated Pyral 12.3.2.3 SEM Analysis of Mechanically Activated Pyral 12.3.2.4 Burn Rates and Temperature Sensitivity Analysis with Varying PTFE Fraction 12.3.2.5 Effect of Mechanical Activation of Pyral on Density, Viscosity, and Heat of Combustion of Propellant 12.3.2.6 Effect of Mechanically Activation of Pyral on the Agglomeration of Aluminum 12.3.2.7 Redesigning the Upper Stages of Launch Vehicles 12.4 Aluminum Combustion in Hybrid Rockets 12.4.1 Literature Review 12.4.2 Experiments with Mechanically Activated Pyral in Hybrid Rockets 12.4.2.1 Preparation of the Fuel Grain 12.4.2.2 The Process to Measure the Mechanical Properties 12.4.2.3 Experimental Setup and Test Procedures 12.4.3 Results and Discussions on Hybrid Rockets 12.4.3.1 Effect of Activated Pyral on Regression Rate 12.4.3.2 Effect on Mechanical Properties 12.4.3.3 Effect on Combustion Efficiency 12.4.3.4 Effect on the Exhaust Products 12.5 Conclusions References 13. Effect of Nanometal Additives on The Ignition of Al-Based Energetic Materials 13.1 Introduction 13.2 Thermal Behavior of Metal NPs and EM Compositions 13.3 Ignition Characteristics of EM 13.4 Kinetic Parameters of Ignition 13.5 Conclusion Acknowledgments References Volume 2 Part V. Solid Propellants and Fuels for In-Space Propulsion and Power 14. Lithium and Magnesium Fuels for Space Propulsion and Power 14.1 Introduction 14.2 Metal-CO2 Propulsion for Mars Missions 14.3 Lithium and Magnesium Fuels for Power Generation in Space 14.4 Conclusions Acknowledgments References 15. Solid Propellants for Space Microthrusters 15.1 Introduction 15.1.1 Requirements of Microthruster for Micro/Nano Satellites 15.1.2 Technological Progress of Solid Propellant Microthrusters 15.2 Microscale Effects on Combustion 15.3 Primer Explosive Solid Propellants 15.4 Thermite Solid Propellants 15.4.1 Design Principles 15.4.2 Survey of Candidate Thermites for Solid Propellants 15.4.3 Preparation and Performance of Al/CuO Thermite Propellant 15.5 Performance of Solid Propellant Microthrusters 15.6 Conclusion Acknowledgments References Part VI. Primary and Secondary Explosives 16. Interesting New High Explosives and Melt-Casts 16.1 Introduction 16.2 Conclusions Acknowledgments References 17. Pyrotechnic Alternatives to Primary Explosive-Based Initiators 17.1 Initiation Theory 17.1.1 Shock Initiation 17.1.1.1 Theory and Factors to Consider 17.1.1.2 Example Devices 17.1.2 Deflagration to Detonation 17.1.2.1 Theory and Factors to Consider 17.1.2.2 Example Devices 17.2 Pyrotechnics in Initiators 17.2.1 Historic Use of Initiators 17.2.2 Introduction to Pyrotechnics 17.2.2.1 Pyrotechnic Fuels 17.2.2.2 Pyrotechnic Oxidizers 17.2.2.3 Pyrotechnic Compositions 17.2.2.4 Additives and Binders 17.2.2.5 Particle Size and Packing Arrangements 17.3 Nanomaterial Viability 17.3.1 Nano-thermite Processing 17.3.1.1 Fabrication of Laminates and Films 17.3.1.2 Fabrication/Production/Synthesis of Single-Component and Composite Nanoparticles 17.3.1.3 Chemical Processes 17.3.1.4 Physical Processes 17.3.1.5 Mechanical Size Reduction/Comminution 17.3.1.6 Preparing Compositions 17.3.1.7 Coatings for Enhanced Performance 17.4 Replacement of Primary Explosives 17.4.1 Performance Comparison: Primary Explosives and Pyrotechnics 17.4.2 Pyrotechnic Compositions or Systems as Initiators 17.5 Future Green Developments 17.5.1 Time Delay Compositions 17.5.1.1 Perchlorate-Free Time Delays 17.5.1.2 Heavy-Metal-Free Pyrotechnic Compositions 17.5.2 Gas Generators 17.6 Environmental Friendly Energetics References 18. Light Sensitive Energetic Materials and Their Laser Initiation 18.1 Introduction 18.2 Laser Initiation of Energetic Materials 18.2.1 Energetic Metal Complexes 18.2.2 Influence of Carbon Nanomaterials on the Properties of Light Sensitive Metal Complexes 18.2.3 Organic High-Energy Materials 18.3 Conclusions Funding Acknowledgments Conflict of Interests Declaration of Originality References Part VII. Sensitivity and Mechanical Properties of Explosives 19. The Chemical Micromechanism of Energetic Material Initiation 19.1 Introduction 19.2 The Basic Mechanisms of the Thermal Decomposition of Organic and Some Important Ionic Energetic Materials 19.3 Thermal Decomposition and the Initiation of Detonation – What is Known About Their Relation 19.3.1 The Outputs of the Simple Non-isothermal Differential Thermal Analysis (DTA) 19.3.2 The Outputs of the Manometric Method of Thermal Reactivity Study 19.3.2.1 The Russian Manometric Method 19.3.2.2 The Results of the Czech Vacuum Stability Test STABIL 19.4 The Length of Trigger Bonds in EM Molecules and Their Initiation Reactivity 19.5 The Specification of Reaction Centers in EM Molecules 19.5.1 The Use of NMR Chemical Shifts 19.5.2 The Use of the Electron Charges at the Nitrogen Atom or the Net Charges at the Nitro Group 19.6 A Comparison of the Splitting of the Polynitro Compounds by Heat and by Shock 19.6.1 The Low-Temperature Thermal Decomposition of EMs as the Main Source Data 19.6.2 Where the First Fission of EM Molecules in a Detonation Wave Should Begin? 19.7 The Point of View of Chemical Physics or Physics of Explosion 19.8 The Initiation Reactivity and Energetics of EMs 19.8.1 Energy Outputs (Performance) 19.8.2 Energy Content 19.8.3 The Influence of the Energetics on Initiatory Reactivity 19.9 Conclusion Acknowledgments References 20. Macro-Micromechanics-Based Ignition Behavior of Explosives Under Low-Velocity Impact 20.1 Introduction 20.2 The Mechanical–Thermal–Chemical Coupling Model 20.2.1 The Constitutive Material Model 20.2.2 Hot Spot Formation Model 20.2.3 Modeling Verification 20.3 The Simulation on Ignition of Confined Steven Test 20.3.1 The Impact Velocity Effect on Ignition 20.3.2 The Size Effect on Ignition 20.3.3 The Projectile Shape Effect on Ignition 20.3.4 The Damage Effect on Ignition 20.4 The Stochastic Ignition Prediction 20.4.1 The Framework for Ignition Probability Prediction 20.4.2 The Effect of the Heterogeneous Microcrack Length on Ignition 20.4.3 The Effect of the Heterogeneous Microcrack Density on Ignition 20.5 Conclusion Acknowledgments References 21. Mechanical and Ignition Responses of HMX and RDX Single Crystals Under Impact and Shock Loading 21.1 Introduction 21.2 Dynamic Responses Under Impact Loading 21.2.1 Shock Loading 21.2.1.1 HMX Single Crystal 21.2.1.2 RDX Single Crystal 21.2.2 High-Pressure Ramp Loading 21.2.2.1 HMX Single Crystal 21.2.2.2 RDX Single Crystal 21.3 Drop-weight Impact Ignition and Burning 21.3.1 Jetting and Localized Reaction 21.3.2 Ignition and Burning Behaviors 21.3.3 Heat Generation Mechanisms 21.4 Modeling Dynamic Responses for Single Crystals 21.4.1 Kinematics and Thermodynamics 21.4.2 Inelasticity and Phase Transformation 21.4.3 Reactive Flow Model 21.5 Discussion and Summary References 22. Dynamic Mechanical Properties of HTPB–IPDI Binders of Four PBX with Different HMX Contents and Energetic Particles Augmented Binder 22.1 Introduction 22.2 Samples 22.2.1 Preparation of Energetic Particles Enhanced Binder 22.2.2 Manufacturing the High Explosive Formulations 22.3 Measurement and Evaluation 22.3.1 DMA Measurement Method 22.3.2 Meaning of Loss Factor Curves 22.3.3 Evaluation of Loss Factor Curves with EMG 22.3.4 Parameterization of Frequency Shift of GRT Temperature 22.4 Results 22.6 Summary and Conclusions List of Abbreviations Symbols Used in Equations Symbols Used with Curve Fitting and Measured Data Symbols Used with Formulations and Materials Acknowledgments 22.A Details on Congruence Between WLF and Modified Arrhenius Equation 22.B Special Consideration of Curing Agent IPDI Index