ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Nano and Micro-Scale Energetic Materials: Propellants and Explosives

دانلود کتاب مواد پرانرژی نانو و در مقیاس میکرو: پیشران ها و مواد منفجره

Nano and Micro-Scale Energetic Materials: Propellants and Explosives

مشخصات کتاب

Nano and Micro-Scale Energetic Materials: Propellants and Explosives

ویرایش: [1 & 2] 
نویسندگان: ,   
سری:  
ISBN (شابک) : 9783527352067 
ناشر: WILEY-VCH 
سال نشر: 2023 
تعداد صفحات: 760
[761] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 17 Mb 

قیمت کتاب (تومان) : 34,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 5


در صورت تبدیل فایل کتاب Nano and Micro-Scale Energetic Materials: Propellants and Explosives به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مواد پرانرژی نانو و در مقیاس میکرو: پیشران ها و مواد منفجره نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مواد پرانرژی نانو و در مقیاس میکرو: پیشران ها و مواد منفجره

گزارشی به روز از مواد پرانرژی نوآورانه و کاربردهای بالقوه آنها در رانش فضایی و مواد منفجره قوی ارائه می دهد. اکثر مواد منفجره و پیشرانه ها در حال حاضر از تعداد کمی از مواد مانند TNT و نیتروسلولز استفاده می کنند. در مقایسه با مواد معمولی، مواد پرانرژی در مقیاس نانو و میکرو ویژگی‌های سوزاندن عالی و چگالی انرژی و بازده انفجاری بسیار بالاتری از خود نشان می‌دهند. مواد پرانرژی در مقیاس نانو و میکرو: پیشرانه‌ها و مواد منفجره یک مرور کلی به موقع از مواد انرژی‌زا در مقیاس نانو (nEMs) و فناوری مواد انرژی‌زا در مقیاس میکرو (µEMs) ارائه می‌دهند. این جلد جامع با پوشش مواد تشکیل دهنده nEM و μEMs و همچنین فرمولاسیون، آماده سازی، خصوصیات، احتراق، احتراق و عملکرد مواد پر انرژی را در کاربردهای مختلف پیشران ها و مواد منفجره بررسی می کند. بیست و دو فصل به بررسی نانوکامپوزیت‌های پیروتکنیک مبتنی بر فلز، پیشرانه موشک‌های جامد و هیبریدی، سوخت‌های جامد در فضا و قدرت، حساسیت و خواص مکانیکی مواد منفجره، مواد پرانرژی جدید و موارد دیگر می‌پردازد. مواد پرانرژی جدید و پتانسیل آنها برای استفاده در پیشرانه ها و مواد منفجره را بررسی می کند آخرین پیشرفت‌های گروه‌های تحقیقاتی پیشرو در حال حاضر فعال در دوازده کشور را خلاصه می‌کند بحث می کند که چگونه مواد جدید سازگار با محیط زیست و با احتراق بالا می توانند در کاربردهای مختلف به بهترین شکل استفاده شوند. اصول مواد پرانرژی، از جمله شباهت ها و تفاوت های بین پیشرانه های کامپوزیت و مواد منفجره را توضیح می دهد. مواد پرانرژی در مقیاس نانو و میکرو: پیشرانه ها و مواد منفجره منبع مهمی برای دانشمندان مواد، متخصصان مواد منفجره، پیروتکنسین ها، شیمیدانان محیط زیست، شیمی دانان پلیمر، شیمی دانان فیزیک، پزشکان هوافضا و مهندسان هوافضا هستند که هم در دانشگاه و هم در صنعت کار می کنند.


توضیحاتی درمورد کتاب به خارجی

Provides an up-to-date account of innovative energetic materials and their potential applications in space propulsion and high explosives Most explosives and propellants currently use a small number of ingredients, such as TNT and nitrocellulose. In comparison to conventional materials, nano- and micro-scale energetic materials exhibit superior burning characteristics and much higher energy densities and explosive yields. Nano and Micro-scale Energetic Materials: Propellants and Explosives provides a timely overview of innovative nano-scale energetic materials (nEMs) and microscale energetic materials (µEMs) technology. Covering nEMs and µEMs ingredients as well as formulations, this comprehensive volume examines the preparation, characterization, ignition, combustion, and performance of energetic materials in various applications of propellants and explosives. Twenty-two chapters explore metal-based pyrotechnic nanocomposites, solid and hybrid rocket propulsion, solid fuels for in-space and power, the sensitivity and mechanical properties of explosives, new energetic materials, and more. Explores novel energetic materials and their potential for use in propellants and explosives Summarizes the most recent advances of leading research groups currently active in twelve countries Discusses how new environmentally friendly, high-combustion energetic materials can best be used in different applications Explains the fundamentals of energetic materials, including similarities and differences between composite propellants and explosives Nano and Micro-scale Energetic Materials: Propellants and Explosives is an important resource for materials scientists, explosives specialists, pyrotechnicians, environmental chemists, polymer chemists, physical chemists, aerospace physicians, and aerospace engineers working in both academia and industry.



فهرست مطالب

Cover
Half Title
Nano and Micro-Scale Energetic Materials: Propellants and Explosives. Volume 1
Nano and Micro-Scale Energetic Materials: Propellants and Explosives. Volume 2
Copyright
Contents
	Volume 1
	Volume 2
Preface
About the Editors
Volume 1
	Part I. Fundamentals
		1. Composite Heterogeneous Energetic Materials: Propellants and Explosives, Similar but Different?
			1.1 Introduction
			1.2 Structure and Composition
				1.2.1 Energetic Fillers
				1.2.2 Binder Systems
					1.2.2.1 Binder Systems for Cast Cure Propellants and Explosives
					1.2.2.2 Pressed PBXs
					1.2.2.3 Plasticizers
				1.2.3 Surface Active Materials (SAMs)
			1.3 Performance
			1.4 Sensitivity
				1.4.1 Sensitivity Correlations
				1.4.2 Transfer to Detonation in Propellants and PBXs
					1.4.2.1 Factors Determining Transfer to Detonation
					1.4.2.2 DDT Description
			1.5 Summary
			List of Abbreviations
			References
		2. High-Pressure Combustion Studies of Energetic Materials
			2.1 Introduction
			2.2 Burning Rates as a Function of Pressure
			2.3 Visual Observations of Burning Behavior as a Function of Pressure
			2.5 Conclusions
			Acknowledgments
			References
	Part II. New Energetic Ingredients
		3. Cyclic Nitramines as Nanoenergetic Organic Materials
			3.1 Introduction
			3.2 Nanosized RDX
			3.3 Nanosized HMX
			3.4 Nanosized CL-20
				3.4.1 Ultrasound- and Spray-Assisted Precipitation of Ultrafine CL-20
				3.4.2 Preparation of CL-20 Nanoparticles Via Oil in Water Microemulsions
				3.4.3 Production of Nanoscale CL-20 Using Ultrasonic Spray-Assisted Electrostatic Adsorption Method (USEA)
				3.4.4 Preparation of Nano CL-20 Via Sonocrystallization
				3.4.5 Preparation of Micro-Sized Particles and their Comparison with Nanoscale CL-20
				3.4.6 Method for Production of Nano CL-20 in Supercritical CO2 and 1,1,1,2-Tetrafluoroethane (TFE)
				3.4.7 Creation of Nano CL-20 Particles by the Method of Bidirectional Rotary Mill
				3.4.8 Electrospray of CL-20 Particles
				3.4.9 Production of Sub-Micro CL-20-Based Energetic Polymer Composite Ink
				3.4.10 Nanoscale Composites Based on CL-20
				3.4.11 Comparison of the Detonation Performance of Micro−/Nanoscale High-Energy Materials
				3.4.12 Preparation of Nano-Sized CL-20/NQ Co-Crystal Via Vacuum Freeze Drying
				3.4.13 Nanoscale 2CL-20⋅HMX High Explosive Cocrystal Synthesized by Bead Milling
				3.4.14 Mechanochemical Fabrication and Properties of CL-20/RDX Nano Co/Mixed Crystals
				3.4.15 Preparation of Nano CL-20/HMX Cocrystal by Milling Method
				3.4.16 Synthesis of Nano CL-20/HMX Co-Crystals by Ultrasonic Spray-Assisted Electrostatic Adsorption Method
				3.4.17 Preparation of Nano-CL-20/TNT Cocrystal Explosives by Mechanical Ball-Milling Method
				3.4.18 Preparation of Nanoscale CL-20/Graphene Oxide by One-Step Ball Milling
				3.4.19 Preparation and Properties of CL-20 Based Composite by Direct Ink Writing
				3.4.20 CL-20 Based Explosive Ink of Emulsion Binder System for Direct Ink Writing
			3.5 Conclusions and Future Outlook
			Declaration of Originality
			References
		4. Clathrates of CL-20: Thermal Decomposition and Combustion
			4.1 Introduction
			4.2 Host–guest Energetic Material Based on CL-20 and Nitrogen Oxides
				4.2.1 Synthesis and Determination of the Structure of New Clathrates
				4.2.2 Thermal Stability of the New Clathrates
				4.2.3 Vapour Pressure Above the New Clathrates
				4.2.4 Combustion Behaviors of the New Clathrates
				4.2.5 Energetic Performance of the New Clathrates
			4.3 Conclusion Remarks
			Acknowledgments
			References
		5. HMX and CL-20 Crystals Containing Metallic Micro and Nanoparticles
			5.1 Introduction
			5.2 Research on High-Energy Cyclic Nitramines HMX and CL-20
				5.2.1 Synthesis of HMX and CL-20 Crystals with Inclusion of Metal Particles
			5.3 Production of Cyclic Nitramine Crystals with Metal Inclusions
				5.3.1 Production of CL-20 Crystals with Metal Inclusions
				5.3.2 Production of HMX Crystals with Metal Inclusions
			5.4 Research on the Physicochemical and Explosive Characteristics of CL-20 and HMX Crystals with Metal Inclusions
			5.5 Research on the Combustion of Fuel Samples Based on CL-20 Crystals with Metal Inclusions
			5.6 Conclusions
			Funding
			Acknowledgments
			References
		6. Effects of TKX-50 on the Performance of Solid Propellants and Explosives
			6.1 Introduction
			6.2 Physicochemical Properties of TKX-50
			6.3 Interactions Between TKX-50 and EMs
				6.3.1 TKX-50/EMs Co-crystals
				6.3.2 TKX-50/EMs Mixtures
			6.4 Performance of Nano-sensitized TKX-50
			6.5 Application in Solid Propellants
				6.5.1 Ideal Energetic Performance
					6.5.1.1 HTPB/TKX-50
					6.5.1.2 GAP/TKX-50
					6.5.1.3 NEPE/TKX-50 System
					6.5.1.4 CMDB/TKX-50 System
				6.5.2 Combustion Features
					6.5.2.1 Combustion Behavior of TKX-50
					6.5.2.2 Combustion Behavior of Solid Propellants Containing TKX-50
				6.5.3 Thermal Decomposition
			6.6 Application in Explosives
			6.7 Conclusions
			References
	Part III. Metal-based Pyrotechnic Nanocomposites
		7. Recent Advances in Preparation and Reactivity of Metastable Intermixed Composites
			7.1 Introduction
			7.2 The Preparation and Reactivity Control of MICs
				7.2.1 Al-Based MICs with Random Distributed Structures
					7.2.1.1 Preparation Methods
					7.2.1.2 Characterization
					7.2.1.3 Reactivity Control
				7.2.2 Al-Based MICs with Multilayered Structures
					7.2.2.1 Preparation Methods
					7.2.2.2 Characterization
					7.2.2.3 Reactivity Control
				7.2.3 Al-Based MICs with Core–Shell Structures
					7.2.3.1 Preparation Methods
					7.2.3.2 Characterization
					7.2.3.3 Reactivity Control
			7.3 Conclusion and Suggestions
			References
		8. Nanothermites: Developments and Future Perspectives
			8.1 Introduction
			8.2 Nanothermites Versus Microthermites
			8.3 Nanothermite-friendly Oxidizers
				8.3.1 Metallic Oxidizers
				8.3.2 Oxidizing Salts
			8.4 Carbon Nanomaterials and Energetic Compositions
			8.5 Future Challenges
			8.6 Conclusion
			References
		9. Engineering Particle Agglomerate and Flame Propagation in 3D-printed Al/CuO Nanocomposites
			9.1 Introduction
			9.2 Printing High Nanothermite Loading Composite Via a Direct Writing Approach
			9.3 Agglomerating in High Al/CuO Nanothermite Loading Composite
				9.3.1 In-Operando Observation of Flame Front
				9.3.2 Mapping Optical to Electron Microscopy of Agglomeration
				9.3.3 Agglomeration Affects the Propagation Rate
			9.4 Engineering Agglomerating and Propagating through Oxidizer Size and Morphology
				9.4.1 The Concept of a Pocket Size
				9.4.2 Reducing Agglomeration with CuO Wires
				9.4.3 Promote Propagating through Using CuO Wires
				9.4.4 Polymer Addition Significantly Reduces the Micro-Explosion of the Agglomerations
				9.4.5 Summary
			9.5 Engineering Agglomeration and Propagating through Restraining the Movement of Agglomerations
				9.5.1 Adding Carbon Fibers to Promote Energy Release Rate in Energetic Composites
				9.5.2 Embedding Carbon Fibers into High Loading Al/CuO Nanothermite Composite
				9.5.3 Enhanced Propagation of Al/CuO Composite with Carbon Fibers
				9.5.4 Enhanced Heat Feedback and Heat Transfer with Carbon Fibers: Restraining the Movement of Agglomerations
				9.5.5 Summary
			9.6 Conclusions and Future Directions
			Acknowledgments
			References
	Part IV. Solid Propellants and Fuels for Rocket Propulsion
		10. Glycidyl Azide Polymer Combustion and Applications Studies Performed at ISAS/JAXA
			10.1 Introduction
			10.2 Combustion Mechanism
				10.2.1 Simplified Model by Asymptotic Analysis [47]
				10.2.2 Three Phase-One Dimensional Full Kinetics Model [49, 50]
			10.3 Application of GAP to Gas Hybrid Rocket Motor [2, 51–53]
			10.4 Summary
			References
		11. Effect of Different Binders and Metal Hydrides on the Performance and Hydrochloric Acid Exhaust Products Scavenging of AP-Based Composite Solid Propellants: A Theoretical Analysis
			Nomenclature
			11.1 Introduction
			11.2 Theoretical Background and Computation Procedure
				11.2.1 Performance of Composite Solid Propellants
				11.2.2 Propellant Energetic Ingredients
				11.2.3 Computation Procedure of CSPs Performance
			11.3 Results and Discussion
			11.4 Conclusion
			References
		12. Combustion of Flake Aluminum with PTFE in Solid and Hybrid Rockets*
			12.1 Introduction
				12.1.1 Solid Rockets
					12.1.1.1 Need for High Burn Rates in Solid Rockets
				12.1.2 Hybrid Rockets
			12.2 Aluminum Combustion in Composite Solid Propellant
				12.2.1 Literature on Aluminum Combustion
			12.3 Effect of Mechanical Activation in Composite Solid Propellants
				12.3.1 Experiments with Solid Propellants
					12.3.1.1 Preparation of Mechanically Activated Pyral
					12.3.1.2 Preparation of Propellants
					12.3.1.3 Experimental Setup
					12.3.1.4 Experimental Procedure
				12.3.2 Results and Discussions on Solid Rockets
					12.3.2.1 Chemical Equilibrium Analysis
					12.3.2.2 DSC and TG Analysis of Mechanically Activated Pyral
					12.3.2.3 SEM Analysis of Mechanically Activated Pyral
					12.3.2.4 Burn Rates and Temperature Sensitivity Analysis with Varying PTFE Fraction
					12.3.2.5 Effect of Mechanical Activation of Pyral on Density, Viscosity, and Heat of Combustion of Propellant
					12.3.2.6 Effect of Mechanically Activation of Pyral on the Agglomeration of Aluminum
					12.3.2.7 Redesigning the Upper Stages of Launch Vehicles
			12.4 Aluminum Combustion in Hybrid Rockets
				12.4.1 Literature Review
				12.4.2 Experiments with Mechanically Activated Pyral in Hybrid Rockets
					12.4.2.1 Preparation of the Fuel Grain
					12.4.2.2 The Process to Measure the Mechanical Properties
					12.4.2.3 Experimental Setup and Test Procedures
				12.4.3 Results and Discussions on Hybrid Rockets
					12.4.3.1 Effect of Activated Pyral on Regression Rate
					12.4.3.2 Effect on Mechanical Properties
					12.4.3.3 Effect on Combustion Efficiency
					12.4.3.4 Effect on the Exhaust Products
			12.5 Conclusions
			References
		13. Effect of Nanometal Additives on The Ignition of Al-Based Energetic Materials
			13.1 Introduction
			13.2 Thermal Behavior of Metal NPs and EM Compositions
			13.3 Ignition Characteristics of EM
			13.4 Kinetic Parameters of Ignition
			13.5 Conclusion
			Acknowledgments
			References
Volume 2
	Part V. Solid Propellants and Fuels for In-Space Propulsion and Power
		14. Lithium and Magnesium Fuels for Space Propulsion and Power
			14.1 Introduction
			14.2 Metal-CO2 Propulsion for Mars Missions
			14.3 Lithium and Magnesium Fuels for Power Generation in Space
			14.4 Conclusions
			Acknowledgments
			References
		15. Solid Propellants for Space Microthrusters
			15.1 Introduction
				15.1.1 Requirements of Microthruster for Micro/Nano Satellites
				15.1.2 Technological Progress of Solid Propellant Microthrusters
			15.2 Microscale Effects on Combustion
			15.3 Primer Explosive Solid Propellants
			15.4 Thermite Solid Propellants
				15.4.1 Design Principles
				15.4.2 Survey of Candidate Thermites for Solid Propellants
				15.4.3 Preparation and Performance of Al/CuO Thermite Propellant
			15.5 Performance of Solid Propellant Microthrusters
			15.6 Conclusion
			Acknowledgments
			References
	Part VI. Primary and Secondary Explosives
		16. Interesting New High Explosives and Melt-Casts
			16.1 Introduction
			16.2 Conclusions
			Acknowledgments
			References
		17. Pyrotechnic Alternatives to Primary Explosive-Based Initiators
			17.1 Initiation Theory
				17.1.1 Shock Initiation
					17.1.1.1 Theory and Factors to Consider
					17.1.1.2 Example Devices
				17.1.2 Deflagration to Detonation
					17.1.2.1 Theory and Factors to Consider
					17.1.2.2 Example Devices
			17.2 Pyrotechnics in Initiators
				17.2.1 Historic Use of Initiators
				17.2.2 Introduction to Pyrotechnics
					17.2.2.1 Pyrotechnic Fuels
					17.2.2.2 Pyrotechnic Oxidizers
					17.2.2.3 Pyrotechnic Compositions
					17.2.2.4 Additives and Binders
					17.2.2.5 Particle Size and Packing Arrangements
			17.3 Nanomaterial Viability
				17.3.1 Nano-thermite Processing
					17.3.1.1 Fabrication of Laminates and Films
					17.3.1.2 Fabrication/Production/Synthesis of Single-Component and Composite Nanoparticles
					17.3.1.3 Chemical Processes
					17.3.1.4 Physical Processes
					17.3.1.5 Mechanical Size Reduction/Comminution
					17.3.1.6 Preparing Compositions
					17.3.1.7 Coatings for Enhanced Performance
			17.4 Replacement of Primary Explosives
				17.4.1 Performance Comparison: Primary Explosives and Pyrotechnics
				17.4.2 Pyrotechnic Compositions or Systems as Initiators
			17.5 Future Green Developments
				17.5.1 Time Delay Compositions
					17.5.1.1 Perchlorate-Free Time Delays
					17.5.1.2 Heavy-Metal-Free Pyrotechnic Compositions
				17.5.2 Gas Generators
			17.6 Environmental Friendly Energetics
			References
		18. Light Sensitive Energetic Materials and Their Laser Initiation
			18.1 Introduction
			18.2 Laser Initiation of Energetic Materials
				18.2.1 Energetic Metal Complexes
				18.2.2 Influence of Carbon Nanomaterials on the Properties of Light Sensitive Metal Complexes
				18.2.3 Organic High-Energy Materials
			18.3 Conclusions
			Funding
			Acknowledgments
			Conflict of Interests
			Declaration of Originality
			References
	Part VII. Sensitivity and Mechanical Properties of Explosives
		19. The Chemical Micromechanism of Energetic Material Initiation
			19.1 Introduction
			19.2 The Basic Mechanisms of the Thermal Decomposition of Organic and Some Important Ionic Energetic Materials
			19.3 Thermal Decomposition and the Initiation of Detonation – What is Known About Their Relation
				19.3.1 The Outputs of the Simple Non-isothermal Differential Thermal Analysis (DTA)
				19.3.2 The Outputs of the Manometric Method of Thermal Reactivity Study
					19.3.2.1 The Russian Manometric Method
					19.3.2.2 The Results of the Czech Vacuum Stability Test STABIL
			19.4 The Length of Trigger Bonds in EM Molecules and Their Initiation Reactivity
			19.5 The Specification of Reaction Centers in EM Molecules
				19.5.1 The Use of NMR Chemical Shifts
				19.5.2 The Use of the Electron Charges at the Nitrogen Atom or the Net Charges at the Nitro Group
			19.6 A Comparison of the Splitting of the Polynitro Compounds by Heat and by Shock
				19.6.1 The Low-Temperature Thermal Decomposition of EMs as the Main Source Data
				19.6.2 Where the First Fission of EM Molecules in a Detonation Wave Should Begin?
			19.7 The Point of View of Chemical Physics or Physics of Explosion
			19.8 The Initiation Reactivity and Energetics of EMs
				19.8.1 Energy Outputs (Performance)
				19.8.2 Energy Content
				19.8.3 The Influence of the Energetics on Initiatory Reactivity
			19.9 Conclusion
			Acknowledgments
			References
		20. Macro-Micromechanics-Based Ignition Behavior of Explosives Under Low-Velocity Impact
			20.1 Introduction
			20.2 The Mechanical–Thermal–Chemical Coupling Model
				20.2.1 The Constitutive Material Model
				20.2.2 Hot Spot Formation Model
				20.2.3 Modeling Verification
			20.3 The Simulation on Ignition of Confined Steven Test
				20.3.1 The Impact Velocity Effect on Ignition
				20.3.2 The Size Effect on Ignition
				20.3.3 The Projectile Shape Effect on Ignition
				20.3.4 The Damage Effect on Ignition
			20.4 The Stochastic Ignition Prediction
				20.4.1 The Framework for Ignition Probability Prediction
				20.4.2 The Effect of the Heterogeneous Microcrack Length on Ignition
				20.4.3 The Effect of the Heterogeneous Microcrack Density on Ignition
			20.5 Conclusion
			Acknowledgments
			References
		21. Mechanical and Ignition Responses of HMX and RDX Single Crystals Under Impact and Shock Loading
			21.1 Introduction
			21.2 Dynamic Responses Under Impact Loading
				21.2.1 Shock Loading
					21.2.1.1 HMX Single Crystal
					21.2.1.2 RDX Single Crystal
				21.2.2 High-Pressure Ramp Loading
					21.2.2.1 HMX Single Crystal
					21.2.2.2 RDX Single Crystal
			21.3 Drop-weight Impact Ignition and Burning
				21.3.1 Jetting and Localized Reaction
				21.3.2 Ignition and Burning Behaviors
				21.3.3 Heat Generation Mechanisms
			21.4 Modeling Dynamic Responses for Single Crystals
				21.4.1 Kinematics and Thermodynamics
				21.4.2 Inelasticity and Phase Transformation
				21.4.3 Reactive Flow Model
			21.5 Discussion and Summary
			References
		22. Dynamic Mechanical Properties of HTPB–IPDI Binders of Four PBX with Different HMX Contents and Energetic Particles Augmented Binder
			22.1 Introduction
			22.2 Samples
				22.2.1 Preparation of Energetic Particles Enhanced Binder
				22.2.2 Manufacturing the High Explosive Formulations
			22.3 Measurement and Evaluation
				22.3.1 DMA Measurement Method
				22.3.2 Meaning of Loss Factor Curves
				22.3.3 Evaluation of Loss Factor Curves with EMG
				22.3.4 Parameterization of Frequency Shift of GRT Temperature
			22.4 Results
			22.6 Summary and Conclusions
			List of Abbreviations
			Symbols Used in Equations
			Symbols Used with Curve Fitting and Measured Data
			Symbols Used with Formulations and Materials
			Acknowledgments
			22.A Details on Congruence Between WLF and Modified Arrhenius Equation
			22.B Special Consideration of Curing Agent IPDI
Index




نظرات کاربران