دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Galal H. Elgemeie, Rasha A. Azzam, Wafaa A. Zaghary, Ashraf A. Aly, Nadia H Metwally, Mona O. Sarhan, Elshimaa M. Abdelhafez, Rasha E. Elsayed سری: ISBN (شابک) : 0128221798, 9780128221792 ناشر: Elsevier سال نشر: 2022 تعداد صفحات: 521 [523] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 56 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب N-Sulfonated-N-Heterocycles: Synthesis, Chemistry, and Biological Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب N-Sulfonated-N-Heterocycles: سنتز، شیمی، و کاربردهای بیولوژیکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
N-Sulfonated-N-Heterocycles سنتز، شیمی و کاربردهای بیولوژیکی این ترکیبات را پوشش می دهد، با تمرکز بر رویکردهای مصنوعی پیشگام، بینش های مکانیکی و محدودیت های آنها، و همچنین پیشرفت های اخیر در این زمینه. سنتز برخی از N-هتروسیکل های سولفونه N و تبدیل آنها به سایر ترکیبات حلقوی و غیر حلقوی مفید و همچنین استفاده از آنها به عنوان واسطه های مفید در تهیه مواد پلیمری و دارویی مورد بحث قرار گرفته است. این کتاب شامل روشها و پروتکلهای دقیق است و تمرکز بر کاربردها، این منبع را به راهنمای ضروری برای همه محققان در زمینه مطالعات مصنوعی آلی، دارویی و پلیمری تبدیل میکند.
N-Sulfonated-N-Heterocycles covers the synthesis, chemistry and biological applications of these compounds, focusing on pioneering synthetic approaches, mechanistic insights and their limitations, as well as recent advances in this field. The synthesis of some of N-sulfonated N-heterocycles and their transformation to other useful cyclic and acyclic compounds are discussed, as well as their uses as useful intermediates in the preparation of polymeric and medicinal materials. This book includes detailed methods and protocols, and the focus on applications makes this resource an essential guide for all researchers in the area of organic, medicinal and polymeric synthetic study.
Front Cover N-Sulfonated-N-Heterocycles Copyright Page Contents About the authors 1 Synthesis of N-sulfonated aziridines 1.1 Introduction 1.2 Synthesis of N-sulfonated aziridines via transferring of nitrogen to alkenes 1.2.1 The addition of nitrene species to alkenes 1.2.1.1 Nitrene transfer reactions using sulfonylimino iodinanes as nitrene precursors 1.2.1.2 Nitrene transfer reactions using sulfonamides as nitrene precursors 1.2.1.3 Nitrene transfer reactions using N-sulfonyl azides as nitrene precursors 1.2.1.4 Nitrene transfer reactions using haloamine-T as nitrene precursors 1.2.2 The addition of nitrogen-centered radical species to alkenes 1.3 Synthesis of N-sulfonated aziridines via transferring of carbon to N-sulfonyl imines 1.3.1 Direct aza-Darzens reaction 1.3.2 Reaction of N-sulfonyl imines with sulfonium ylides 1.4 Synthesis of N-sulfonated aziridines via intramolecular cyclization of amine derivatives References 2 Chemistry of N-sulfonated aziridines and their use in polymerization reactions 2.1 Introduction 2.2 Chemistry of N-sulfonated aziridines 2.2.1 Ring-opening of N-sulfonated aziridines to acyclic amine derivatives 2.2.1.1 To β-phenylethylamine derivatives 2.2.1.2 To vicinal diamines 2.2.1.3 To allyl amines and enamines 2.2.1.4 To Ketimines 2.2.2 Ring-opening of N-sulfonated aziridines to other cyclic N-sulfonated aza-heterocycles 2.2.2.1 To N-sulfonated four-membered heterocycles 2.2.2.2 To N-sulfonated five-membered heterocyclic ring 2.2.2.3 To N-sulfonated six-membered heterocyclic ring 2.2.2.4 To N-sulfonated seven-membered heterocyclic ring 2.3 Uses of N-sulfonated aziridines in living aza-anionic polymerization 2.3.1 Bis(trimethylsilyl)amides-catalyzed anionic ring-opening polymerization of N-sulfonated aziridines 2.3.1.1 Copolymerization of different N-sulfonylaziridine monomers 2.3.2 Organocatalytic ring-opening polymerization of N-sulfonated aziridines 2.3.3 Synthesis of copolymers and block copolymers of N-sulfonylaziridine monomers with different well-known monomers 2.3.4 Functionalized poly(sulfonylaziridine)s prepared via APOR polymerization of N-sulfonylaziridine 2.3.4.1 Polyaziridine-based linear in-chain functionalized polymers 2.3.4.2 Polyaziridine-based linear chain-end functionalized polymers: Telechelic polyaziridines 2.3.4.3 Recent synthetic developments of polyaziridine-based macromolecular architectural polymers 2.3.5 Desulfonation: easy access of linear polyamides from polyaziridine prepared via the anionic polymerization of N-sulfo... References 3 Synthesis of N-sulfonated azetidines and β-lactemes and their applications 3.1 Introduction 3.2 Synthesis of sulfonyl-activated azetidines and azetidin-2-ones 3.2.1 Ring expansion of sulfonyl-activated azidirine 3.2.1.1 To sulfonyl-activated azetidine 3.2.1.2 To sulfonyl-activated azetidin-2-ones (sulfonyl-activated β-lactam) 3.2.2 Synthesis of N-sulfonylazetidines via cycloaddition reactions 3.2.3 Synthesis of sulfonyl-activated azetidines and azetidin-2-ones via intramolecular cyclization of amine derivatives or... 3.2.3.1 To N-sulfonyl azetidines 3.2.3.2 N-sulfonyl azetidinone (N-sulfonyl β-lactam) 3.2.4 Synthesis of N-sulfonyl azetidine via ring contraction of 2-pyrrol-one 3.2.5 Synthesis of bicyclic β-lactams via a crossed-benzoin/oxy-cope rearrangement 3.3 Chemistry of sulfonyl-activated azetidine and azetidin-2-ones 3.3.1 To acyclic amine derivatives 3.3.2 To benzosultams 3.4 Sulfonyl-activated azetidine and azetidin-2-ones in polymerization application 3.4.1 Synthesis of poly(N-sulfonylaziridine)s via anionic polymerization 3.4.2 Synthesis of β-lactam-containing polymers via metathesis polymerization References 4 N-Sulfonated N-azoles: Synthesis, chemistry and biological applications 4.1 Introduction 4.2 N-Sulfonated pyrroles 4.2.1 Synthesis 4.2.1.1 N-Sulfonyl triazole as a α-imino metallocarbene precursor in the synthesis of N-sulfonyl pyrroles and their derivatives 4.2.1.2 Transannulation reactions of N-sulfonyl triazoles with alkynes 4.2.1.3 Transannulation reactions of N-sulfonyl triazoles with alkenes 4.2.1.4 N-sulfonyl aziridines as a precursor for synthesis N-sulfonyl pyrroles and their derivatives 4.2.1.5 N-Sulfonyl ynamides as a precursor in the synthesis of fused N-sulfonyl pyrroles and their derivatives 4.2.2 Biological activity of N-tosyl pyrroles 4.2.2.1 Anticancer activity 4.2.2.2 Antiviral activity 4.3 Synthesis of N-tosyl isoxazoles and their derivatives 4.3.1 Synthesis 4.4 Synthesis of N-tosyl oxazoles and their derivatives 4.4.1 Synthesis 4.5 Synthesis of N-tosyl-1,2-thiazole and its derivatives 4.5.1 Synthesis 4.6 Synthesis of N-tosyl thiazole and its derivatives 4.6.1 Synthesis References 5 Synthesis of N-sulfonated N-diazoles, their chemistry and biological assessments 5.1 Introduction 5.2 Synthesis of N-sulfonylimidazole and its derivatives 5.3 Uses of N-sulfonylimidazole derivatives 5.4 Chemistry of N-sulfonylpyrazoles 5.4.1 Synthesis of N-sulfonylated pyrazoles 5.5 Chemistry of N-sulfonylthiadiazole derivatives 5.5.1 Chemistry of thiadiazole moiety 5.6 Synthesis of 1,3,4-thiadiazole and 1,2,3-thiadiazole derivatives 5.7 Chemistry of N-sulfonyl-1,3,4-oxadiazoles References 6 Synthesis, chemistry and uses of N-sulfonated N-triazoles and N-tetrazoles 6.1 Introduction 6.2 Synthesis of N-sulfonyl-1,2,3-triazoles 6.3 Reactions of N-sulfonyl-1,2,3-triazoles 6.3.1 Reactions with alcoholic compounds 6.3.2 Reactions with ketones 6.3.3 Reactions with substituted ether 6.3.4 Reaction with cyclohexane 6.3.5 Reactions with different amines 6.3.6 Reaction with bromocyanide 6.3.7 Hydrolysis 6.3.8 Miscellaneous reactions 6.3.9 Ring expansion 6.4 Chemistry of 1,2,4-triazoles 6.4.1 Synthesis of N-sulfonylated 1,2,4-triazoles 6.5 Biological activity of some N-sulfonyltriazoles 6.6 Chemistry of N-sulfonyl-1,2,3,4-tetrazoles 6.6.1 Synthesis of N-sulfonyl-1,2,3,4-tetrazoles References 7 Synthetic approaches and biological evaluation of N-sulfonated N-azines 7.1 Introduction 7.2 Synthesis of N-sulfonyl pyridinone derivatives and their biological activities 7.2.1 Synthesis of N-sulfonyl 2-pyridinones 7.2.2 Synthesis of N-sulfonyl dihydro 2-pyridinones 7.2.3 Synthesis of N-sulfonyl tetrahydro 2-pyridinones 7.2.4 Synthesis of N-sulfonyl 3-pyridinones 7.2.5 Synthesis of N-sulfonyl 4-pyridinones 7.2.6 Synthesis of N-sulfonyl 2-quinolone and their derivatives 7.2.7 Synthesis of N-sulfonyl isoquinolone and their derivatives 7.2.8 Synthesis of N-sulfonyl pyridinone-fused heterocycles 7.3 Synthesis of N-sulfonyl pyridine derivatives and their biological activities 7.3.1 Synthesis of N-sulfonyl di- and tetrahydropyridines 7.3.2 Synthesis of N-sulfonyl pipyridines 7.3.3 Synthesis of N-sulfonyl quinolines 7.3.4 Synthesis of N-sulfonyl isoquinolines and their derivatives 7.3.5 Synthesis of N-sulfonyl pyridine-fused heterocycles 7.4 Synthesis of N-sulfonyl oxazine derivatives and their biological activities 7.4.1 Synthesis of N-sulfonyl 1,4-oxazines 7.4.1.1 Synthesis of N-sulfonyl di- and tetrahydro-1,4-oxazines 7.4.1.2 Synthesis of N-sulfonyl 1,4-benzoxazines 7.4.2 Synthesis of N-sulfonyl 1,3-oxazines 7.5 Synthesis of N-sulfonyl thiazine derivatives 7.5.1 Synthesis of N-sulfonyl 1,4-thiazines 7.5.2 Synthesis of N-sulfonyl 1,4-benzothiazines References 8 Synthesis of N-sulfonated N-diazines, N-triazines and N-tetrazines; their uses and biological applications 8.1 Introduction 8.2 N-Sulfonyldiazines 8.2.1 N-Sulfonyl-1,4-diazines (N-sulfonyl pyrazines) 8.2.2 N-Sulfonyl-1,2-diazines (N-sulfonyl pyridazines) 8.2.3 N-Sulfonyl-1,3-diazines (N-sulfonyl pyrimidines) 8.3 N-Sulfonyl-triazines 8.3.1 N-Sulfonyl-1,2,4-triazines 8.3.2 N-Sulfonyl-1,3,5-triazines 8.3.3 N-Sulfonyl-1,2,3-triazines 8.4 N-Sulfonated tetrazines References 9 Synthesis of N-sulfonated N-azepines 9.1 Introduction 9.2 N-Sulfonyl azepines 9.2.1 Metal-catalyzed intermolecular cyclization 9.2.1.1 Palladium-catalyzed reactions 9.2.1.2 Copper-catalyzed reactions 9.2.1.3 Silver catalyzed reactions 9.2.2 Metal-catalyzed intramolecular cyclization 9.2.2.1 Palladium-catalyzed reactions 9.2.2.2 Gold catalyzed reactions 9.2.2.3 Iridium catalyzed reactions 9.2.3 Other synthetic pathways 9.3 N-Sulfonyl dihydroazepines 9.3.1 Metal-catalyzed intermolecular cyclization 9.3.1.1 Palladium-catalyzed reactions 9.3.1.2 Silver catalyzed reactions 9.3.1.3 Rhodium-catalyzed reactions 9.3.2 Metal-catalyzed intramolecular cyclization 9.3.2.1 Palladium-catalyzed reactions 9.3.2.2 Gold catalyzed reactions 9.3.2.3 Silver catalyzed reactions 9.3.2.4 Rhodium-catalyzed reactions 9.3.2.5 Ruthenium catalyzed reactions 9.3.2.6 Platinum-catalyzed reactions 9.3.3 Other synthetic pathways 9.4 N-Sulfonyl tetrahydroazepines 9.4.1 Metal-catalyzed intermolecular cyclization 9.4.1.1 Rhodium-catalyzed reactions 9.4.2 Metal-catalyzed intramolecular cyclization 9.4.2.1 Pallidum catalyzed reactions 9.4.2.2 Gold catalyzed reactions 9.4.2.3 Rhodium-catalyzed reactions 9.4.2.4 Ruthenium catalyzed reactions 9.4.2.5 Molybdenum catalyzed reactions 9.4.2.6 Silver catalyzed reactions 9.4.3 Other synthetic pathways References 10 Synthesis of N-sulfonated N-benzoazoles and their use in medicinal chemistry 10.1 Introduction 10.2 Chemistry of N-sulfonyl indoles 10.2.1 Biological activities of N-sulfonated indoles 10.2.1.1 Antiparasitic effect 10.2.1.2 5-HT6-antagonism 10.2.1.3 Anti-apoptotic effect 10.2.1.4 Retinoic acid receptor-related orphan receptor γ (ROR γ) agonists 10.2.1.5 Antipsychotics activity 10.2.1.6 anti-HIV-1 activity 10.3 Synthesis of N-sulfonyl benzoxazole 10.3.1 Synthesis of N-sulfonyl-1,2-benzoxazole 10.3.2 Synthesis of N-sulfonyl-1,3-benzoxazole 10.4 Synthesis of N-sulfonyl benzothiazoles 10.4.1 Synthesis of N-sulfonyl-1,2-benzothiazoles 10.4.2 Synthesis of N-sulfonyl-1,3-benzothiazoles References 11 N-Sulfonated N-benzodiazoles and N-benzotriazoles: Synthesis and medicinal activity 11.1 Introduction 11.2 N-Sulfonyl benzimidazole 11.2.1 Synthesis of N- sulfonyl benzimidazole 11.2.2 Biological activities of N-sulfonyl benzimidazole derivatives 11.2.2.1 Antiinflammatory activity 11.2.2.2 Antitumor activity 11.2.2.3 Antitrypanosoma cruzi activity 11.2.2.4 Antiviral activity 11.2.2.5 5HT6 receptor antagonists 11.2.2.6 Antibacterial and urease inhibitory activity 11.2.2.7 Antimycobacterium activity 11.2.2.8 Anti-HIV mutant strains 11.2.2.9 Apoptosis enhancement activity 11.2.2.10 Inhibitors of NOD1-induced nuclear factor-jB activation 11.2.2.11 Anti-hepatitis B virus activity 11.3 N-Sulfonyl indazoles 11.3.1 Chemistry of N-sulfonyl indazoles 11.3.2 Biological activities of N-sulfonyl benzimidzole 11.3.2.1 5-HT6 antagonists 11.3.2.2 Antiepilepsy 11.3.2.3 HDAC inhibitor activity 11.4 N-Sulfonyl triazoles 11.4.1 Chemistry of N-sulfonyl triazoles 11.4.2 Biological activities of N-sulfonyl benzotriazoles 11.4.2.1 Sodium hydrogen exchanger inhibitory activity 11.4.2.2 Platelet aggregation inhibition activity 11.4.2.3 Antibacterial activity References 12 N-Sulfonated N-benzoazines: Synthesis and medicinal chemistry 12.1 Introduction 12.2 N-Sulfonyl-cinnolines 12.2.1 Medicinal chemistry aspects 12.2.2 Synthetic aspects 12.3 N-Sulfonyl-phthalazine 12.3.1 Medicinal chemistry aspects 12.3.2 Synthetic aspects 12.3.2.1 Synthesis of N-methyl/phenylsulfonyl phthalazine 12.3.2.2 Synthesis of 3,4-dihydrobenzo[f]phthalazines 12.4 N-Sulfonyl-quinazolines 12.4.1 Medicinal chemistry aspects 12.4.2 Synthetic aspects 12.4.2.1 The preparation of dihydroquinazolines via metal-free [4+2] cycloaddition of ynamides with nitriles 12.4.2.2 Synthesis of imidazo- and pyrimido [1,2-b]-1,2-benzothiazine-6,6-dioxides 12.5 N-Sulfonyl-quinolines, – isoquinolines and their derivatives 12.5.1 Medicinal chemistry aspects 12.5.2 Synthetic aspects 12.6 N-Sulfonyl-quinolinones 12.6.1 Medicinal chemistry aspects 12.6.2 Synthetic aspects 12.6.2.1 Sulfonyl chalcones and their quinolinone derivatives 12.6.2.2 One-pot synthesis of aryl-sulfonyl quinolone derivatives 12.6.2.3 Synthesis of N-sulfonyl γ and δ-lactams via transition metal-free oxidative catalysis 12.6.2.4 Synthesis of N-sulfonyl-oxoquinoline heterocycles 12.7 N-Sulfonyl quinoxaline 12.7.1 Medicinal chemistry aspect 12.7.2 Synthetic aspects 12.7.2.1 Synthesis N-arylsulfonylquinoxaline 12.7.2.2 Synthesis of N1-arylsulfonyl-2-quinoxalinones 12.7.2.3 Synthesis of multisubstituted dihydroquinoxalin-2-one References 13 Patents and applications of N-sulfonated N-heterocycles 13.1 Introduction 13.2 Three membered N-sulfonyl heterocycles 13.2.1 N-Sulfonyl aziridine 13.3 Four-membered N-sulfonyl heterocycles 13.3.1 N-Sulfonyl-azetidine and azetidine derivatives 13.3.1.1 Medical applications of azetidine derivatives 13.3.1.2 N-Sulfonyl azetidine derivatives for the treatment of hyperlipidemia 13.3.1.3 N-Sulfonyl azetidine derivatives for the treatment of muscular degradation disorders 13.3.1.4 N-Sulfonyl azetidine derivatives for the treatment of cardiac diseases 13.3.1.5 N-Sulfonyl azetidine derivatives for the treatment of cancer 13.3.1.6 N-Sulfonyl azetidine derivatives for the treatment of inflammation and related disorders 13.4 Five membered N-sulfonyl heterocycles 13.4.1 N-Sulfonyl imidazole and imidazoline derivatives 13.4.1.1 Medical applications of imidazole and imidazoline derivatives 13.4.1.2 N-Sulfonyl imidazole and imidazoline derivatives for the treatment of cancer 13.4.2 N-Sulfonyl pyrazole derivatives 13.4.2.1 Medical applications of pyrazole derivatives 13.4.3 N-sulfonated pyrrole and pyrrolidine 13.4.3.1 Medical applications of pyrrole and pyrrolidine derivatives 13.4.3.2 N-Sulfonyl pyrrole for pain management 13.4.3.3 N-Sulfonyl dihydro pyrrole and pyrrolidine for cancer treatment 13.5 Six membered N-sulfonyl heterocycles 13.5.1 N-Sulfonyl piperazine derivatives 13.5.1.1 Medical applications of piperazine derivatives 13.5.1.2 N-Sulfonyl piperazine for pain management 13.5.1.3 N-Sulfonyl piperazine for the treatment of Alzheimer’s disease 13.5.1.4 Treatment of diseases correlated to the production of reactive oxygen species 13.5.2 N-Sulfonyl piperidine derivatives 13.5.2.1 Medical applications of piperazine derivatives 13.5.2.2 N-Sulfonyl piperidine for the treatment of Alzheimer’s disease 13.5.2.3 N-Sulfonyl piperidine as ATP citrate lyase inhibitors 13.5.3 N-Sulfonyl pyrazine derivatives 13.5.3.1 Medical applications of pyrazine derivatives 13.5.3.2 N-Sulfonyl pyrazine derivatives for pain management 13.6 Fused N-sulfonyl heterocycles 13.6.1 N-Sulfonyl azaindoles 13.6.1.1 Medical applications of azaindole derivatives 13.6.1.2 N-Sulfonyl azaindole derivatives for treatment of inflammation 13.6.1.3 N-Sulfonyl azaindoles for treatment of HIV 13.6.1.4 N-sulfonyl azaindole for pain management 13.6.2 N-Sulfonyl benzimidazole 13.6.2.1 Medical applications of benzimidazole derivatives 13.6.2.2 N-Sulfonyl benzimidazole derivatives for the treatment of obesity 13.6.2.3 N-Sulfonyl benzimidazole derivatives as anticancer agents 13.6.2.4 N-Sulfonyl benzimidazole derivatives as antibacterial agents 13.6.2.5 N-Sulfonyl benzimidazole derivatives as antiviral agents 13.6.2.6 N-Sulfonyl benzimidazole derivative as immuno-modulators 13.6.3 N-Sulfonyl benzotriazole derivatives 13.6.3.1 Medical applications of benzotriazole derivatives 13.6.3.2 N-Sulfonyl benzotriazole derivatives as anticancer agents 13.6.3.3 N-Sulfonyl benzotriazole derivatives for treatment of HIV 13.6.3.4 N-Sulfonyl benzotriazole derivatives as phosphate transport inhibitors 13.6.3.5 N-Sulfonyl benzotriazole derivatives as human melanin-concentrating hormone receptor antagonists 13.6.3.6 N-Sulfonyl benzotriazole derivatives in the industry 13.6.3.6.1 Manufacturing a photo thermographic film 13.6.3.6.2 Process for manufacturing novel colorant compound 13.6.4 N-Sulfonyl indole derivatives 13.6.4.1 Medical applications of indole derivatives 13.6.4.2 N-Sulfonyl indole for inflammation-related disorders 13.6.4.3 N-Sulfonyl indole derivatives for the treatment of peptic ulcer 13.6.4.4 N-Sulfonyl indole derivatives for the treatment of Hepatitis B 13.6.4.5 N-Sulfonyl indole derivatives as anticancer agents 13.6.4.6 N-Sulfonyl indole derivatives for the treatment of Parkinson’s disease 13.6.4.7 N-Sulfonyl indole derivatives for the treatment of obesity 13.6.4.8 Other medical uses of N-sulfonyl indole 13.6.5 N-Sulfonyl quinoline and N-sulfonyl isoquinoline derivatives 13.6.5.1 Medical applications of quinoline and isoquinoline derivatives 13.6.5.2 N-Sulfonyl quinoline and N-sulfonyl isoquinoline derivatives for the treatment of cancer 13.6.6 Other N-Sulfonyl heterocycles References Index Back Cover