دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Rai M., Golińska P. (ed.) سری: ISBN (شابک) : 9781032355474 ناشر: CRC Press سال نشر: 2023 تعداد صفحات: 306 [307] زبان: english فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 12 Mb
در صورت تبدیل فایل کتاب Mycosynthesis of Nanomaterials: Perspectives and Challenges به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مایکوسنتز نانومواد: دیدگاه ها و چالش ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Mycosynthesis of Nanomaterials: Perspectives and Challenges Copyright Preface Contents Section I: Different Nanoparticles Synthesized by Fungi 1. Using Fungi to Produce Metal/Metalloid Nanomaterials Introduction Biogenically produced Nanomaterial How do fungi produce nanomaterials? The importance of the nanomaterial cap Controlling synthesis Types of nanomaterial produced Conclusion References 2. Yeast as a Cell Factory: Biological Synthesis of Selenium Nanoparticles Introduction Geochemistry of selenium Chemical methods for synthesis of selenium NPs Biosynthesis of selenium NPs with bacteria Biosynthesis of selenium NPs through fungi Biological synthesis of selenium NPs by yeasts Mechanism of biosynthesis of selenium nanoparticles by yeasts References 3. Penicillium species as an Innovative Microbial Platform for Bioengineering of Biologically Active Nanomaterials Introduction Penicillium species: An overview Green nanotechnology: An innovative approach for bioengineering of nanomaterials Bioengineering of nanomaterials using Penicillium species Antimicrobial activity of bioengineered nanomaterials using Penicillium species Anticancer activity of bioengineered nanomaterials using Penicillium species Other biomedical activities of bioengineered nanomaterials using Penicillium species Conclusion and future directions References 4. Biosynthesis of Iron Oxide Nanoparticles Using Fungi Introduction Magnetic Iron oxide nanoparticles Methods for the synthesis of Iron oxide nanoparticles Characterization of the Iron oxide nanoparticles UV-visible absorption spectroscopy Powder X-ray diffraction (XRD) analysis Fourier Transform Infrared (FTIR) spectroscopy Dynamic Light Scattering (DLS) analysis Microscopic techniques Fungi as a biological source for the green synthesis of the IONPs Biosynthesis routes of Iron oxide nanoparticles using fungi Mechanism of synthesis of IONPS by fungi Use of fungal extract as capping agent Conclusion References 5. Mycosynthesis of Chitosan Nanoparticles Introduction Preparation of chitosan nanoparticles: The conventional approaches Mycosynthesis of chitosan nanoparticles Conclusion References 6. Fungi-Mediated Fabrication of Copper Nanoparticles and Copper Oxide Nanoparticles, Physical Characterization and Antimicrobial Activity Introduction Synthesis process of copper nanoparticles and copper oxide nanoparticles from different fungal soueces Isolation, purification, screening, and molecular characterization of fungal strains Fungal biomass and filtrate preparation for Cu NPs and CuO NPs synthesis Synthesis of Cu NPs and CuO NPs from fungal filtrate Physical characterization of fungi-mediated Cu NPs and CuO NPs Ultraviolet-visible spectroscopy X-ray diffraction (XRD) Fourier transform infrared spectroscopy (FTIR) Energy-dispersive X-ray spectroscopy (EDX) Scanning electron microscopy (SEM) Transmission electron microscopy (TEM) Dynamic light scattering (DLS) and zeta potential Antimicrobial activity of fungi-mediated Cu NPs and CuO NPs Conclusion and future prospects References 7. Mycogenic Synthesis of Silver Nanoparticles and its Optimization Introduction Fungi as nanofactories—an overview Aspergillus spp. Fusarium spp. Penicillium spp. Trichoderma spp. Yeasts Other fungi Influence of physico-chemical parameters on mycosynthesis of AgNPs Effect of temperature Effect of pH Effect of concentrations of AgNO3 Effect of the culture medium and quantity of biomass Conclusion and future perspectives Acknowledgement References 8. Biosynthesis of Gold Nanoparticles by Fungi Introduction Fabrication of gold nanoparticles Biological synthesis of gold nanoparticles by fungi Yeasts Filamentous fungi Macroscopic fungi Applications of gold nanoparticles produced by fungi Imaging and diagnostics Anticancer activity Antimicrobial activity (antibacterial, antifungal, antiviral) Other applications Conclusions References 9. Biosynthesis of Zinc Oxide Nanoparticles and Major Applications Introduction Biosynthesis of zinc oxide nanoparticles Fungi as a potential resource for nanoparticles synthesis Fungi-mediated synthesis of zinc oxide nanoparticles Factors affecting the myco-synthesis of nanoparticles Limitations of the mycosynthesis Use of zinc oxide nanoparticles Applications in the biomedical field Applications in the agricultural field Applications in environmental pollution remediation Other applications Toxicity and other drawbacks of mycosynthesized zinc oxide nanoparticles Conclusion and future perspectives Abbreviations References 10. Fungi-Mediated Synthesis of Carbon-Based Nanomaterials Introduction Fungi: a rich source of biomass and macromolecules Carbon-based materials Fullerenes nanostructures Carbon nanotubes Graphite and graphene nanostructures Carbon nanofibers Fungi-based synthesis of carbon-nanoparticles Carbonaceous nanomaterials derived from fungi Methods of carbon nanomaterials synthesis from fungi Methods of detection and characterization Spectrophotometric detection of carbon nanomaterials Nanoparticle Tracking Analysis (NTA) Zeta potential measurement and stability analysis Fourier Transform Infrared (FTIR) spectrometry analysis Fluorescence and Potoluminescence detection Importance and application of fungal-based carbon nanomaterials (FBCNs) In agriculture In physics Biomedical applications For drug delivery In cancer therapy Conclusion Acknowledgements References 11. Fungi-Based Synthesis of Nanoparticles and its Large-Scale Production Possibilities Introduction Fungi in green synthesis of nanoparticles Mechanisms involved in fungal-based nanomaterial synthesis Factors affecting the fungal-based nanomaterial synthesis Stage of the fungal growth phase Effect of growth media Applications of myconanotechnology in agriculture Large-scale production of nanomaterials using fungi Upstream processing for fungal fermentation Obtaining the desired organism and its improvement Selection of bioreactors for large-scale production of fungal metabolites Downstream processing for fungal fermentation Conclusion and future perspectives Abbreviations References Section II: Characterization Techniques of Mycosynthesised Nanoparticles and Mechanism of Synthesis 12. Techniques for Characterization of Biologically Synthesized Nanoparticles by Fungi Introduction Need for characterization of nanoparticles Considerations for analysis of nanoparticles Characterization techniques Ultraviolet-visible (UV-Vis) spectroscopy Fourier transform infrared (FTIR) spectroscopy X-ray diffraction analysis Nanoparticle tracking and analysis (NTA) SEM and EDX TEM Zeta potential measurements Atomic force microscopy (AFM) Conclusion Acknowledgements References 13. Mechanism of Synthesis of Metal Nanoparticles by Fungi Introduction Mechanism of biogenic metallic nanoparticles Fusarium Aspergillus Trichoderma Penicillium Alternaria Rhizopus Phoma Pleurotus Cladosporium Colletotrichum Schizophyllum Conclusions Acknowledgment References Section III: Toxicity of Nanoparticles to Human and Environment 14. Toxicity of Mycosynthesised Nanoparticles Introduction Nanotoxicity Routes of nanoparticle entry Inhalation Injection Ingestion Toxicity of mycosynthesised nanoparticles Ecotoxicity of NPs Role of shape, size, dose and surface capping of mycosynthesised nanoparticle in toxicity Effect of NP size on nanotoxicity Effect of NPs shape on nanotoxicity Effect of NP concentration on nanotoxicity Effect of capping Mechanism of Nanotoxicity Conclusions Acknowledgements References Index Editors' Biography