ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Mutation Breeding for Sustainable Food Production and Climate Resilience

دانلود کتاب اصلاح جهش برای تولید غذای پایدار و انعطاف پذیری آب و هوا

Mutation Breeding for Sustainable Food Production and Climate Resilience

مشخصات کتاب

Mutation Breeding for Sustainable Food Production and Climate Resilience

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9811697191, 9789811697197 
ناشر: Springer 
سال نشر: 2023 
تعداد صفحات: 814
[815] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 17 Mb 

قیمت کتاب (تومان) : 50,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 6


در صورت تبدیل فایل کتاب Mutation Breeding for Sustainable Food Production and Climate Resilience به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب اصلاح جهش برای تولید غذای پایدار و انعطاف پذیری آب و هوا نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب اصلاح جهش برای تولید غذای پایدار و انعطاف پذیری آب و هوا




توضیحاتی درمورد کتاب به خارجی

This book highlights the recent progress on the applications of mutation breeding technology in crop plants. Plant breeders and agriculturists are faced with the new challenges of climate change, human population growth, and dwindling arable land and water resources which threaten to sustain food production worldwide. Genetic variation is the basis which plant breeders require to produce new and improved cultivars. The understanding of mutation induction and exploring its applications has paved the way for enhancing genetic variability for various plant and agronomic characters, and led to advances in gene discovery for various traits. Induced mutagenesis has played a significant role in crop improvement and currently, the technology has resulted in the development and release of more than 3600 mutant varieties in most of the crop plants with great economic impact. The field of ‘mutation breeding’ has come long way to become an important approach for crop improvement. This book covers various methodologies of mutation induction, screening of mutants, genome editing and genomics advances and mutant gene discovery. The book further discusses success stories in different countries and applications of mutation breeding in food crops, horticultural plants and plantation crops. This informative book is very useful to plant breeders, students and researchers in the field of agriculture, plant sciences, food science and genetics.



فهرست مطالب

Foreword
Preface
Contents
Editors and Contributors
1: Mutation Breeding to Promote Sustainable Agriculture and Food Security in the Era of Climate Change
	1.1 Introduction
	1.2 Climate Change and Food Security
		1.2.1 Traits/Responses for Coping with Climate Change
	1.3 Induced Genetic Variation
		1.3.1 Mutation Breeding for Sustainable Food Production
		1.3.2 Plant Mutant Resources
		1.3.3 Current Progress on Advances in Induced Mutagenesis
	1.4 Conclusions and Prospects
	References
2: History of Plant Mutation Breeding and Global Impact of Mutant Varieties
	2.1 Introduction
	2.2 Discovery of Mutations
		2.2.1 Muller´s Discovery of Induction of Mutations on Drosophila
			2.2.1.1 ClB: An Elegant Technique
		2.2.2 Stadler´s Discovery of Induction of Mutations in Plant Systems
	2.3 Early Experiments with Induced Mutations
		2.3.1 Classic Examples of Early Application of Induced Mutations
		2.3.2 Gustafsson Builds Up the Momentum for Mutation Breeding
	2.4 Techniques for Detection and Analysis of Induced Quantitative Variation
	2.5 Discovery of Chemical Mutagenesis
		2.5.1 Mechanism of Gene Mutation
	2.6 Application of Mutation Technique in Crop Improvement
		2.6.1 Ultra Modern Techniques of Mutation Breeding in Crop Improvement
			2.6.1.1 High Hydrostatic Pressure (HHP)
			2.6.1.2 Ion Beam Technology (IBT)
			2.6.1.3 Space Breeding Technology (SBT)
			2.6.1.4 Targeting Induced Local Lesions IN Genomes (TILLING)
			2.6.1.5 Endonucleolytic Mutation Analysis by Internal Labelling (EMAIL)
	2.7 Role of Mutation Breeding in Crop Improvement
	2.8 Development of Crop Varieties Through Mutation Breeding: Global Scenario
		2.8.1 Mutants in Recombination Breeding
	2.9 Major Plant Traits Improved by Induced Mutations
		2.9.1 Yield and Yield Components Improvement
		2.9.2 Tolerance/Resistance to Abiotic and Biotic Stresses
			2.9.2.1 Tolerance to Abiotic Stresses
			2.9.2.2 Tolerance/Resistance to Biotic Stress
		2.9.3 Grain Quality and Nutrition
		2.9.4 Mutation Breeding for Improvement of Agronomic Traits
			2.9.4.1 Plant Type, Growth Habit and Architecture
			2.9.4.2 Flowering and Ripening Time
	2.10 Social and Economic Impact of Mutation Breeding Technique in Crop Improvement
	2.11 Conclusion
	References
3: Physical and Chemicals Mutagenesis in Plant Breeding
	3.1 Introduction
	3.2 History of Physical and Chemicals Mutagens in Plant Breeding
		3.2.1 Physical and Chemical Mutagens
			3.2.1.1 Physical Mutagens
			3.2.1.2 Chemical Mutagens
			3.2.1.3 Advantages and Disadvantages of Physical and Chemical Mutagens
	3.3 Determination of Optimum Dosage for Mutation Induction
	3.4 Mutagenesis
		3.4.1 Mutagenesis of Seed
		3.4.2 Mutagenesis of Vegetative Propagules
	3.5 Combined Mutagenic Treatments
	3.6 Mutations Screening
	3.7 Impacts of Plant Mutation Breeding in Crop Plant Improvement
	3.8 Future Outlook of Plant Mutation Breeding
	3.9 Conclusion
	References
4: Mutagenesis and Selection: Reflections on the In Vivo and In Vitro Approaches for Mutant Development
	4.1 Introduction
	4.2 Choice of the Starting Material
	4.3 Doses to Be Used
	4.4 Objective for Mutation Breeding
	4.5 Generations
	4.6 Screening Methodology
	4.7 In Vitro Mutagenesis and Selection
	4.8 In Vitro Cultures
	4.9 Mutagens, Dose Optimization and Other Considerations
	4.10 Somaclonal Mutant Varieties
	4.11 Mutant Selection
		4.11.1 Selection for Biotic Stress Tolerance
		4.11.2 Selection for Abiotic Stress Tolerance
		4.11.3 Selection for Enhanced Nutritional Content
	4.12 Concluding Remarks
	References
5: Haploid Mutagenesis: An Old Concept and New Achievements
	5.1 Introduction
	5.2 Methods of Doubled Haploid Production
		5.2.1 Crosses with Haploidy-Inducing Lines
		5.2.2 Wide Hybridisation Followed by Chromosome Elimination
		5.2.3 In Vitro-Based Systems: Gynogenesis
		5.2.4 In Vitro-Based Systems: Androgenesis
	5.3 Haploid Mutagenesis
		5.3.1 Explants Used for Mutagenic Treatment
		5.3.2 Mutagens Utilised in Haploid Mutagenesis
		5.3.3 Selection of Desired Phenotypes
	5.4 Examples of Successful Haploid Mutagenesis
		5.4.1 New Germplasm for Basic Research and Breeding
		5.4.2 Modifications of Fatty Acids Profiles
		5.4.3 Nitrogen Uptake Modifications
		5.4.4 Disease Resistance
		5.4.5 Cold Tolerance
	5.5 Haploid Targeted Mutagenesis
	References
6: Strategies for Screening Induced Mutants for Stress Tolerance
	6.1 Introduction
	6.2 Strategies and Techniques for Improving Crop Efficiency Against Stresses
		6.2.1 Important Considerations on Handling Mutated Populations and Mutant Lines
	6.3 Screening for Abiotic Stress Tolerance
	6.4 Considerations for Abiotic Stress Screening
	6.5 Screening for Biotic Stress Tolerance
	6.6 In Vitro Screening
	6.7 Successful Examples of Mutagenesis for Abiotic and Biotic Stress Tolerance
	6.8 Conclusions
	References
7: Induced Mutagenesis for Developing Climate Resilience in Plants
	7.1 Introduction
	7.2 Climate Change and Associated Plant Functional Traits
	7.3 Classical Mutagenesis and Plant Breeding
	7.4 TILLING (Targeting Induced Local Lesions in Genomes)
	7.5 Insertional Mutagenesis
	7.6 Targeted Mutagenesis Using Gene Editing Tools
	7.7 Conclusion and Future Prospectus
	References
8: Molecular Markers for Mutant Characterization
	8.1 Introduction
	8.2 Types of Mutations
		8.2.1 Classical Mutations
		8.2.2 Epimutations
		8.2.3 Gene-Tagged Mutants
		8.2.4 Gene Silencing Mutants
		8.2.5 Gene-Edited Mutants
		8.2.6 Deletion Mutants
	8.3 Characterization of Mutants
		8.3.1 Morphological Markers
		8.3.2 Biochemical Markers
		8.3.3 DNA Markers
		8.3.4 Transcriptome and miRNA Profiling
		8.3.5 Transposable Element Markers
		8.3.6 Retrotransposon Markers
		8.3.7 DNA Transposon Markers
		8.3.8 Markers to Detect Epimutations
	8.4 Opportunities to Develop New Marker Systems
	8.5 Conclusions and Prospects
	References
9: Application of TILLING as a Reverse Genetics Tool to Discover Mutation in Plants Genomes for Crop Improvement
	9.1 Introduction
	9.2 Targeting Induced Local Lesions IN Genomes (TILLING)
		9.2.1 TILLING Process
	9.3 Mutagenesis Agents
		9.3.1 Chemical Agents
		9.3.2 Physical Agents
	9.4 DNA Extraction and Pooling
	9.5 Mutation Detection Methods for TILLING
		9.5.1 Denaturing High-Performance Liquid Chromatography (DHPLC)
		9.5.2 Endonuclease Cleavage Followed by Electrophoresis
		9.5.3 Alternate Approaches to LI-COR Screening
		9.5.4 Conformation Sensitive Capillary Electrophoresis (CSCE)
		9.5.5 Matrix-Assisted Laser Desorption/Ionization-Time of Flight (MALDI-TOF)
		9.5.6 High-Resolution Melt (HRM)
		9.5.7 NGS-Based TILLING Approaches
	9.6 Identification and Evaluation of the Individual Mutant
	9.7 Bioinformatics Tools
	9.8 Modified TILLING Approaches
		9.8.1 EcoTILLING
		9.8.2 Individualized TILLING (iTILLING)
		9.8.3 VeggieTILLING
	9.9 Application of TILLING in Crop Improvement
		9.9.1 TILLING for Disease-Resistance Traits
		9.9.2 TILLING for Abiotic Stress Tolerance Traits
		9.9.3 TILLING for Plant Architecture
		9.9.4 TILLING for Yield and Quality-Related Traits
	9.10 TILLING Versus Genome Editing
	9.11 Conclusions and Future Prospective
	References
10: Plant Mutagenesis Tools for Precision Breeding: Conventional CRISPR/Cas9 Tools and Beyond
	10.1 Introduction
	10.2 Conventional and Pre-CRISPR Mutagenesis Tools
	10.3 Basics of CRISPR/Cas-Based Tool
	10.4 CRISPR-Based Tools for Genetic Engineering of Plants
		10.4.1 Epigenetic Modification Tools
		10.4.2 Knockout/Knockin Tools
		10.4.3 Point Mutation Tools
			10.4.3.1 DNA and RNA Base Editors
			10.4.3.2 Prime Editor
		10.4.4 CRISPR Tools for Directed Evolution
		10.4.5 Transcriptional Regulation Tools
	10.5 Agricultural Applications
	10.6 Conclusion and Future Perspective
	References
11: Crop Improvement Through Induced Genetic Diversity and Mutation Breeding: Challenges and Opportunities
	11.1 Introduction
	11.2 Induced Genetic Diversity for Crop Improvement
	11.3 Examples of Recent Outcomes in Crop Improvement
	11.4 Mutations in the Study of Plant Biology
	11.5 Future Outlook
	References
12: Induced Mutations for Development of New Cultivars and Molecular Analysis of Genes in Japan
	12.1 Introduction
	12.2 Mutation Breeding and Released Cultivars in Japan
		12.2.1 The Number of Cultivars Developed by Mutation Breeding
		12.2.2 The Economic Impact of Mutant Cultivars in Japan
	12.3 Gamma Field Symposium and Selected Reports of Gamma Field Symposia
		12.3.1 Some Recommended Reports of Gamma Field Symposia
			12.3.1.1 Development of cv. Reimei Rice Through a Gamma-Ray Irradiation
			12.3.1.2 Radiosensitivity of Soybean
			12.3.1.3 Gene Regulation at the Waxy Locus in Rice (Low Amylose Content)
			12.3.1.4 Analysis of Seed Protein Mutants and Development of Low-Protein Rice
			12.3.1.5 Resistant Induction and Bioassay Screening of Alternaria Disease in Pear and Apple
			12.3.1.6 Recurrent Mutation Breeding for Outcrossing Crops
			12.3.1.7 Mutation Breeding of Chrysanthemum
			12.3.1.8 Characteristics of Gamma Ray- and Ion Beam-Induced Mutations
			12.3.1.9 Mutation Induction Through Ion-Beam Irradiation
			12.3.1.10 Mutable Gene(s) or Transposon
	12.4 Some Interesting Induced Mutations
		12.4.1 Non-shattering Gene and Induction of Non-shattering Cultivars in Rice
		12.4.2 Giant Embryo in Rice
		12.4.3 Fatty Acid Composition, Lipoxygenase Lacking, and Glycinin Rich in Soybean
			12.4.3.1 Fatty Acid Composition
			12.4.3.2 Lipoxygenase Lacking
			12.4.3.3 Glycinin Rich and Low Allergenicity
		12.4.4 Super-Nodulation
		12.4.5 Mendel´s Gene
		12.4.6 Low-Cadmium Rice
		12.4.7 Epicuticular Wax-Free Mutation of Sorghum
	12.5 Achievement of Biological Research on Mutations Induced by Gamma Ray
		12.5.1 Different Sizes and Locations of Deletions Generate Different Kinds of Phenotypes
		12.5.2 Useful Mutations Induced with Acute or Chronic Gamma-Ray Irradiation
			12.5.2.1 Phytochrome
			12.5.2.2 Aluminum Tolerance
	12.6 Conclusions
	References
13: Role of Mutation Breeding in Crop Improvement with Special Reference to Indian Subcontinent
	13.1 Introduction
	13.2 Global Scenario of Mutation Breeding in Crop Improvement
		13.2.1 Asia
			13.2.1.1 China
			13.2.1.2 Japan
			13.2.1.3 Viet Nam
			13.2.1.4 Thailand
			13.2.1.5 South Korea
			13.2.1.6 Myanmar
		13.2.2 Europe
			13.2.2.1 Sweden
			13.2.2.2 Czech Republic
			13.2.2.3 Germany
			13.2.2.4 Italy
			13.2.2.5 Finland
			13.2.2.6 Bulgaria
		13.2.3 North America
			13.2.3.1 The USA
			13.2.3.2 Canada
			13.2.3.3 Mexico
		13.2.4 Latin America
			13.2.4.1 Argentina
			13.2.4.2 Cuba
			13.2.4.3 Peru
			13.2.4.4 Brazil
		13.2.5 Australia
		13.2.6 Africa
			13.2.6.1 Egypt
			13.2.6.2 Ghana
			13.2.6.3 Sudan
			13.2.6.4 Mauritius
			13.2.6.5 Namibia
	13.3 Mutation Breeding for Crop Improvement in the Indian Subcontinent
		13.3.1 Mutation Breeding for Crop Improvement in India
			13.3.1.1 Mutant Varieties Released for Crop Improvement in India
			13.3.1.2 Success Stories of Prominent Mutant Varieties Released in India
				13.3.1.2.1 Pusa-408 (Ajay)
				13.3.1.2.2 Pusa-413 (Atul)
				13.3.1.2.3 Pusa-417 (Girnar)
				13.3.1.2.4 Pusa-547
			13.3.1.3 Other Prominent Mutant Varieties Released in India
		13.3.2 Mutation Breeding for Crop Improvement in Pakistan
		13.3.3 Mutation Breeding for Crop Improvement in Bangladesh
		13.3.4 Mutation Breeding for Crop Improvement in Sri Lanka
	13.4 Future Scope
	13.5 Conclusion
	References
14: Success of Mutation Breeding of Sorghum to Support Food Security in Indonesia
	14.1 Introduction
	14.2 Mutation Breeding in Indonesia
	14.3 Breeding of Mutation of Sorghum
	14.4 Dissemination, Economic, Social, and Environmental Impacts
	14.5 National and International Collaboration
	14.6 Conclusions
	References
15: Potential of Mutation Breeding in Genetic Improvement of Pulse Crops
	15.1 Introduction
	15.2 Genetic Bottlenecks
	15.3 Approaches for Broadening the Genetic Base
	15.4 Mutation Breeding
	15.5 History of Mutation Breeding in Pulses
	15.6 Spontaneous Mutations
	15.7 Induced Mutations
		15.7.1 Physical Mutagenesis
		15.7.2 Chemical Mutagenesis
		15.7.3 Space Mutagenesis
	15.8 Optimal Dose and Genotypic Sensitivity
	15.9 Mutagenic Effectiveness and Efficiency
	15.10 Mutant Screening
	15.11 High-Throughput Mutation Detection and Screening Techniques
	15.12 Types of Mutations
		15.12.1 Chlorophyll Mutations
		15.12.2 Mutations Affecting Morphological and Other Quantitative Traits
	15.13 Mutants in Cross-Breeding
	15.14 Mutation Breeding for Yield and Varietal Development in Pulses
		15.14.1 Chickpea
		15.14.2 Pigeon Pea
		15.14.3 Mung Bean
		15.14.4 Urdbean
		15.14.5 Cowpea
	15.15 Mutation Breeding for Pest and Disease Resistance in Pulses
	15.16 Mutation Breeding for Abiotic Stress Tolerance
	15.17 Mutation Breeding for Improved Nutrition in Pulses
	15.18 Impact of Mutant Pulse Crop Varieties in India
	15.19 New Breeding Techniques (Targeted Mutagenesis)
	15.20 Conclusion and Future Prospects
	References
16: Advances in Mutation Breeding of Groundnut (Arachis hypogaea L.)
	16.1 Introduction
	16.2 Mutagens
	16.3 Cytogenetic Aberrations
	16.4 Mutations for Seed Size
	16.5 Mutations for Early Maturity
	16.6 Mutations for Subspecific Traits
	16.7 Mutations for Trait Association
	16.8 Mutations for Biotic and Abiotic Stress Tolerance
	16.9 Mutations for Physiological Traits
	16.10 Mutations for Seed Biochemical Traits
	16.11 Mutation Breeding for Climate Resilience in Groundnut
	16.12 Mutant Varieties
	16.13 Significance and Coverage of Groundnut Mutant and Mutant-Derived Varieties
	16.14 TILLING in Groundnut
	16.15 Molecular Characterizations of Mutants Through Target Gene-Based Approach
	16.16 Mutagenomics for Characterization of Mutants
	16.17 Gene Editing for Site-Directed Mutagenesis
	16.18 Conclusions and Prospects
	References
17: Mutation Breeding for Sustainable Food Production in Latin America and the Caribbean Under Climate Change
	17.1 Introduction
		17.1.1 Argentina
		17.1.2 Brazil
		17.1.3 Costa Rica
		17.1.4 Chile
		17.1.5 Cuba
		17.1.6 Mexico
		17.1.7 Peru
	17.2 Mutation Breeding in Latin America Facing Climatic Change
		17.2.1 Mutation Breeding in Rice for Salinity and Drought Tolerance
			17.2.1.1 Molecular Evaluation of Cuban Rice Mutants
		17.2.2 Selection of Heat-Tolerant Mutant of Quinoa (Chenopodium quinoa Willd) in Peru
			17.2.2.1 Mutation Breeding for Drought Tolerance in Soybean (Glycine max Merrill) and Stevia sp. in Paraguay
			17.2.2.2 Mutation Breeding for Drought Tolerance in Sweet Potato (Ipomoea batatas L.)
			17.2.2.3 Mutation Breeding for Drought Tolerance in tomato (Solanum lycopersicum L.)
	17.3 Conclusion
	References
18: Mutation Breeding Studies in the Indian Non-basmati Aromatic Rice: Success and Outlook
	18.1 Introduction
		18.1.1 Mutation Breeding Research in Rice
	18.2 Mutation Studies in Ajara Ghansal (Non-basmati Aromatic Landrace)
		18.2.1 Performance of Mutants
		18.2.2 Stability and Performance of Selected Mutants
			18.2.2.1 Dwarf Mutants
			18.2.2.2 Early-Maturity Mutants
			18.2.2.3 Lodging-Resistant Mutants
			18.2.2.4 High-Yielding Mutants
	18.3 Mutation Studies in Kala Jirga (Non-basmati Aromatic Landrace)
		18.3.1 Performance of Mutants
		18.3.2 Stability and Performance of Mutants
			18.3.2.1 Dwarf Mutants
			18.3.2.2 Early Maturity Mutants
			18.3.2.3 High-Yielding Mutants
	18.4 Tissue Culture Studies on Ajara Ghansal and Kala Jirga Rice Landraces
	18.5 Conclusions and Future Outlook
	References
19: Induced Mutagenesis in Chrysanthemum
	19.1 Introduction
	19.2 Plant Resources and Methodologies
		19.2.1 Mutant Genotype
		19.2.2 Recurrent Irradiation
		19.2.3 Colchicine Treatment
		19.2.4 Early- and Late-Blooming Varieties
		19.2.5 Management of Induced Chimera
		19.2.6 Management of Spontaneous Mutation Chimera
		19.2.7 In Vitro Mutagenesis
		19.2.8 General Considerations
			19.2.8.1 LD50 Dose
			19.2.8.2 Radiosensitivity
			19.2.8.3 Role of Propagule and Time of Irradiation
			19.2.8.4 Recurrent Irradiation
			19.2.8.5 Colchi-Mutation
			19.2.8.6 Mutant Genotype (Mutant of a Mutant)
	19.3 Detection of Mutation (M1V1 and Later Vegetative Generations)
		19.3.1 Mutation in Flower Morphology
		19.3.2 Color Mutation
		19.3.3 Chlorophyll Variegation
		19.3.4 Spectrum of Mutations
	19.4 Possibilities of Inducing Desired Flower Color Mutation (Directive Mutation)
	19.5 Demand-Based Experiments
	19.6 Bottlenecks
	19.7 Induced Chimera and Management
	19.8 In Vitro Management of Chimera Developed Through Bud Sprout
		19.8.1 In Vitro Mutagenesis
	19.9 Acute and Chronic Irradiation
	19.10 Ion Beam Technology
	19.11 Annual Chrysanthemum
	19.12 Cause of Flower Color Mutation
	19.13 Chrysanthemum Mutants
	19.14 Present Status of Mutation Research on Chrysanthemum
	19.15 Conclusion and Prospects
	References
20: Mutation Breeding Research in Sweet Pepper
	20.1 Introduction
	20.2 Physical Mutagenesis and Mutagens
		20.2.1 X-Rays
		20.2.2 Gamma Rays
		20.2.3 Neutrons
		20.2.4 Ion Beam Irradiation
		20.2.5 Cosmic Irradiation
		20.2.6 Laser Beam Irradiation
	20.3 Chemical Mutagenesis and Mutagens
		20.3.1 Alkylating Agents
			20.3.1.1 Ethyl Methanesulfonate
			20.3.1.2 N-Nitroso-N-methylurea (NMU) and N-nitroso-N-ethylurea (NEU)
			20.3.1.3 Ethyleneimine
			20.3.1.4 Dimethyl Sulfate and Diethyl Sulfate
		20.3.2 Antibiotics
		20.3.3 Intercalating Agents
		20.3.4 Other Chemical Mutagens
			20.3.4.1 Sodium Azide
			20.3.4.2 Caffeine
			20.3.4.3 Colchicine
	20.4 Mutagenesis with Combination of Mutagens
	20.5 Summary of the Achievements and Some Perspectives of the Traditional Mutation Breeding in Sweet Pepper
		20.5.1 Registered New Mutant Varieties
		20.5.2 Remarks on the Future of the Traditional Mutation Breeding in Sweet Pepper
	References
21: Induced Mutation Technology for Sugarcane Improvement: Status and Prospects
	21.1 Introduction
	21.2 Outlook of Sugarcane Crop Improvement
	21.3 Induced Mutagenesis in Sugarcane
		21.3.1 Combination of In Vitro Culture and Induced Mutagenesis
		21.3.2 Radiation-Induced Mutagenesis Program in Sugarcane
	21.4 Mutagenomics and Advances in Post-mutagenesis Analyses
	21.5 Mutagenesis Through Genome Editing in Sugarcane
	21.6 Conclusions
	References
22: Induced Mutations for Developing New Ornamental Varieties
	22.1 Introduction
	22.2 A Brief Mutation Breeding History of Ornamental Plants
	22.3 The Role of In Vitro Techniques in Mutation Breeding of Ornamental Plants
		22.3.1 The Factors Affecting In Vitro Mutation in Ornamental Plants
	22.4 Conclusion and Prospects
	References
23: Improvement of Fruit Crops Through Radiation-Induced Mutations Facing Climate Change
	23.1 Introduction
	23.2 Physical Mutagens
		23.2.1 Fast Neutron Mutagenesis
		23.2.2 Ion Beam Mutagenesis
	23.3 Mutagenic Efficiency, Effectiveness, and Dosimetry
		23.3.1 Mutagenic Efficiency and Effectiveness
		23.3.2 Dosimetry
	23.4 In Vitro Mutagenesis
	23.5 Impact of Mutation-Assisted Breeding on Fruit-Quality Traits
	23.6 Impact of Mutation-Assisted Breeding on Seed-Related Traits
	23.7 Mutation-Assisted Breeding for Biotic and Abiotic Stress
		23.7.1 Abiotic Stress Tolerance
		23.7.2 Biotic Stress Tolerance
	23.8 Impact of Mutant Cultivars
	23.9 Molecular Tools to Distinguish Mutants
	23.10 Limitations
	23.11 Conclusion and Future Perspective
	References
24: Induced Mutations for Genetic Improvement of Banana
	24.1 Introduction
	24.2 Problems in Cultivation of Banana
	24.3 Induced Mutagenesis Studies in Banana
	24.4 Resolving Chimera Occurrence
	24.5 Embryogenic Cells as Explant for Mutation Induction
	24.6 Commonly Employed Mutagenic Agents and Their Utility in Banana Improvement
	24.7 Molecular Analysis of Novel Mutants
	24.8 DNA-Based Markers
	24.9 RNA-Based Molecular analysis
	24.10 Next Generation Sequencing-Based Approach of Mutation Detection and Mapping
	24.11 Whole-Genome Resequencing
	24.12 Exome Sequencing
	24.13 Recent Advances in Mapping
	24.14 Conclusions and Future Prospective
	References
25: Mutation Breeding in Date Palm (Phoenix dactylifera L.)
	25.1 Introduction
		25.1.1 Limitations of Conventional Breeding
		25.1.2 Role of Mutation Breeding
	25.2 Mutation Sources
		25.2.1 Somaclonal Variation
		25.2.2 Induced Mutation
	25.3 In Vitro Selection
		25.3.1 Abiotic Stress Agents
		25.3.2 Biotic Agents
	25.4 Mutation Induction in Developing Bayoud Resistance
		25.4.1 Establishment of Embryogenic Cultures
		25.4.2 Irradiation of Embryogenic Cultures
			25.4.2.1 Gamma Room Cobalt 60 Characteristic
			25.4.2.2 Post-irradiation
			25.4.2.3 Optimal Dose of Mutagen
			25.4.2.4 Proliferation of Irradiated Callus
			25.4.2.5 Histological Analysis of Calli
		25.4.3 In Vitro Resistance Screening
			25.4.3.1 Extraction and Fraction of Fusarium Toxin
			25.4.3.2 In Vitro Selection of Irradiated Materials
			25.4.3.3 Embryogenic Suspension Cultures
			25.4.3.4 In Vitro Somatic Embryos Selection
			25.4.3.5 Regeneration of Putative Mutants
			25.4.3.6 In Vitro Selection by Detached Leaves
			25.4.3.7 Test of Artificial Inoculation of Plants
			25.4.3.8 Effect of Fraction FII of F.o.a. Toxin on Detached Leaves of Vitro-Plants
	25.5 Evaluations of Mutants
		25.5.1 In Vivo Evaluation of Putative Mutants
			25.5.1.1 Acclimatization of Putative Mutants
			25.5.1.2 Greenhouse Evaluation
			25.5.1.3 Field Evaluation
		25.5.2 Molecular Characterization
		25.5.3 Flow Cytometric Analysis
	25.6 Conclusions and Prospects
	References
26: Mutation Breeding in Tropical Root and Tuber Crops
	26.1 Introduction
	26.2 Mutation Breeding in Tropical Root and Tuber Crops
	26.3 Mutation Breeding Methods in Tropical Root and Tuber Crops
		26.3.1 Cassava
			26.3.1.1 Mutation Breeding Achievements So Far
		26.3.2 Sweet Potato
			26.3.2.1 Mutation Breeding Achievements So Far
		26.3.3 Yams
			26.3.3.1 Mutation Breeding Achievements So Far
		26.3.4 Aroid Tuber Crops
			26.3.4.1 Mutation Breeding Achievements So Far
		26.3.5 Chinese Potato
			26.3.5.1 Mutation Breeding Achievements So Far
		26.3.6 Yam Bean
			26.3.6.1 Mutation Breeding Achievements So Far
		26.3.7 Other Minor Tuber Crops
	26.4 Conclusion and Future Aspects
	References




نظرات کاربران