دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: برق و مغناطیس ویرایش: نویسندگان: Hagen Kleinert سری: ISBN (شابک) : 981279171X, 9812791701 ناشر: World Scientific سال نشر: 2008 تعداد صفحات: 523 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 6 مگابایت
در صورت تبدیل فایل کتاب Multivalued fields in condensed matter, electromagnetism, and gravitation به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب زمینه های چند منظوره در ماده چگالش ، الکترومغناطیس و گرانش نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مطالب: مبانی. رویکرد اقدام؛ تقارن های پیوسته و قوانین حفاظت. قضیه Noether; تبدیل سنج چند ارزشی در Magnetostatics. میدان های چند ارزشی در ابرسیال ها و ابررساناها. دینامیک ابر سیالات؛ دینامیک ابر سیال و ابررسانای باردار. انحصارهای مغناطیسی نسبیتی و محصور شدن بار الکتریکی. نقشه برداری چند ارزشی از کریستال های ایده آل به کریستال های دارای نقص. ذوب نقص؛ مکانیک نسبیتی در مختصات منحنی; پیچ خوردگی و انحنای ناشی از نقص. انحنا و پیچ خوردگی ناشی از تعبیه. اصل نقشه برداری چند ارزشی. معادلات میدانی گرانش; فیلدهای حداقل همراه چرخش عدد صحیح. ذرات با چرخش نیمه صحیح؛ قانون حفاظت کوواریانس؛ گرانش ماده در حال چرخش به عنوان یک نظریه سنج. ویژگیهای پیشروی پیچش در گرانش. تئوری دور موازی گرانش. گرانش در حال ظهور.
Contents: Basics; Action Approach; Continuous Symmetries and Conservation Laws. Noether s Theorem; Multivalued Gauge Transformations in Magnetostatics; Multivalued Fields in Superfluids and Superconductors; Dynamics of Superfluids; Dynamics of Charged Superfluid and Superconductor; Relativistic Magnetic Monopoles and Electric Charge Confinement; Multivalued Mapping from Ideal Crystals to Crystals with Defects; Defect Melting; Relativistic Mechanics in Curvilinear Coordinates; Torsion and Curvature from Defects; Curvature and Torsion from Embedding; Multivalued Mapping Principle; Field Equations of Gravitation; Minimally Coupled Fields of Integer Spin; Particles with Half-Integer Spin; Covariant Conservation Law; Gravitation of Spinning Matter as a Gauge Theory; Evanescent Properties of Torsion in Gravity; Teleparallel Theory of Gravitation; Emerging Gravity.
Preface Notes and References Contents List of Figures 4.1 Infinitesimally thin closed current loop L and magnetic field 4.2 Single- and multi-valued definitions of arctanϕ 5.1 Specific heat of superfluid 4He 5.2 Energies of the elementary excitations in superfluid 4He 5.3 Rotons join side by side to form surfaces whose boundary appears as a large vortex loop 5.4 Vortex loops in XY-model for different β = 1/kBT 5.5 Lattice Yukawa potential at the origin and the associated Tracelog 5.6 Specific heat of Villain model in three dimensions 5.7 Critical temperature of a loop gas with Yukawa interactions 5.8 Specific heat of superconducting aluminum 5.9 Potential for the order parameter ρ with cubic term 5.10 Phase diagram of a two-dimensional layer of superfluid 4He 5.11 Order parameter ¯ρ = |φ|/|φ0| around a vortex line of strength n = 1, 2, 3, . . . as a function of the reduced distance ¯r = r/ξ 7.1 Energy gap of superconductor as a function of temperature 7.2 Energies of the low-energy excitations in superconductor 7.3 Contour plot of zeros for energy eigenvalues in superconductor 7.4 Temperature behavior of superfluid density ρs/ρ = φ(Δ/T) (Yoshida function) and the gap function ¯ρs/ρ = ¯π(Δ/T) 7.5 Temperature behavior of the functions governing the kinetic term of the pair field in the BCS superconductor 7.6 Spatial variation of order parameter ρ and magnetic field H in the neighborhood of a planar domain wall between normal and superconducting phases N and S 7.7 Order parameter ρ and magnetic field H for a vortex line 7.8 Critical field Hc1 as a function of the parameter κ 7.9 Lines of equal size of order parameter ρ(x) in a typical mixed state in which the vortex lines form a hexagonal lattice 7.10 Temperature behavior of the critical magnetic fields of a type-II superconductor 7.11 Magnetization curve as a function of the external magnetic field 9.1 Intrinsic point defects in a crystal 9.2 Formation of a dislocation line (of the edge type) from a disc of missing atoms 9.3 Naive estimate of maximal stress supported by a crystal under shear stress 9.4 Dislocation line permitting two crystal pieces to move across each other 9.5 Formation of a disclination from a stack of layers of missing atoms 9.6 Grain boundary where two crystal pieces meet with different orientations 9.7 Two typical stacking faults 9.8 Definition of Burgers vector 9.9 Screw dislocation which arises from tearing a crystal 9.10 Volterra cutting and welding process 9.11 Lattice structure at a wedge disclination 9.12 Three different possibilities of constructing disclinations 9.13 In the presence of a dislocation line, the displacement field is defined only modulo lattice vectors 9.14 Geometry used in the derivation of Weingarten’s theorem 9.15 Illustration of Volterra process 9.16 Defect line L branching into L′ and L′′ 9.17 Generation of dislocation line from a pair of disclination lines 10.1 Specific heat of various solids 10.2 Specific heat of melting model 10.3 Phase diagram in the T-ℓ-plane in two-dimensional melting 10.4 Separation of first-order melting transition into two successive Kosterlitz-Thouless transitions in two dimensions 11.1 Illustration of crystal planes before and after elastic distortion 12.1 Edge dislocation in a crystal associated with a missing semi-infinite plane of atoms as a source of torsion 12.2 Edge disclination in a crystal associated with a missing semi-infinite section of atoms as a source of curvature 12.3 Illustration of parallel transport of a vector around a closed circuit 12.4 Illustration of non-closure of a parallelogram after inserting an edge dislocation 14.1 Images under holonomic and nonholonomic mapping of δ-function variation 1 Basics 1.1 Galilean Invariance of Newtonian Mechanics 1.1.1 Translations 1.1.2 Rotations 1.1.3 Galilei Boosts 1.1.4 Galilei Group 1.2 Lorentz Invariance of Maxwell Equations 1.2.1 Lorentz Boosts 1.2.2 Lorentz Group 1.3 Infinitesimal Lorentz Transformations 1.3.1 Generators of Group Transformations 1.3.2 Group Multiplication and Lie Algebra 1.4 Vector-, Tensor-, and Scalar Fields 1.4.1 Discrete Lorentz Transformations 1.4.2 Poincar´e group 1.5 Differential Operators for Lorentz Transformations 1.6 Vector and Tensor Operators 1.7 Behavior of Vectors and Tensors under Finite Lorentz Transformations 1.7.1 Rotations 1.7.2 Lorentz Boosts 1.7.3 Lorentz Group 1.8 Relativistic Point Mechanics 1.9 Quantum Mechanics 1.10 Relativistic Particles in Electromagnetic Field 1.11 Dirac Particles and Fields 1.12 Energy-Momentum Tensor 1.12.1 Point Particles 1.12.2 Perfect Fluid 1.12.3 Electromagnetic Field 1.13 Angular Momentum and Spin 1.14 Spacetime-Dependent Lorentz Transformations 1.14.1 Angular Velocities 1.14.2 Angular Gradients Appendix 1 A Tensor Identities 1 A.1 Product Formulas 1 A.2 Determinants 1 A.3 Expansion of Determinants Notes and References 2 Action Approach 2.1 General Particle Dynamics 2.2 Single Relativistic Particle 2.3 Scalar Fields 2.3.1 Locality 2.3.2 Lorenz Invariance 2.3.3 Field Equations 2.3.4 Plane Waves 2.3.5 Schr¨odinger Quantum Mechanics as Nonrelativistic Limit 2.3.6 Natural Units 2.3.7 Hamiltonian Formalism 2.3.8 Conserved Current 2.4 Maxwell’s Equation from Extremum of Field Action 2.4.1 Electromagnetic Field Action 2.4.2 Alternative Action for Electromagnetic Field 2.4.3 Hamiltonian of Electromagnetic Fields 2.4.4 Gauge Invariance of Maxwell’s Theory 2.5 Maxwell-Lorentz Action for Charged Point Particles 2.6 Scalar Field with Electromagnetic Interaction 2.7 Dirac Fields 2.8 Quantization Notes and References 3 Continuous Symmetries and Conservation Laws Noether’s Theorem 3.1 Continuous Symmetries and Conservation Laws 3.1.1 Group Structure of Symmetry Transformations 3.1.2 Substantial Variations 3.1.3 Conservation Laws 3.1.4 Alternative Derivation of Conservation Laws 3.2 Time Translation Invariance and Energy Conservation 3.3 Momentum and Angular Momentum 3.3.1 Translational Invariance in Space 3.3.2 Rotational Invariance 3.3.3 Center-of-Mass Theorem 3.3.4 Conservation Laws from Lorentz Invariance 3.4 Generating the Symmetries 3.5 Field Theory 3.5.1 Continuous Symmetry and Conserved Currents 3.5.2 Alternative Derivation 3.5.3 Local Symmetries 3.6 Canonical Energy-Momentum Tensor 3.6.1 Electromagnetism 3.6.2 Dirac Field 3.7 Angular Momentum 3.8 Four-Dimensional Angular Momentum 3.9 Spin Current 3.9.1 Electromagnetic Fields 3.9.2 Dirac Field 3.10 Symmetric Energy-Momentum Tensor 3.11 Internal Symmetries 3.11.1 U(1)-Symmetry and Charge Conservation 3.11.2 Broken Internal Symmetries 3.12 Generating the Symmetry Transformations for Quantum Fields 3.13 Energy-Momentum Tensor of Relativistic Massive Point Particle 3.14 Energy-Momentum Tensor of Massive Charged Particle in Electromagnetic Field Notes and References 4 Multivalued Gauge Transformations in Magnetostatics 4.1 Vector Potential of Current Distribution 4.2 Multivalued Gradient Representation of Magnetic Field 4.3 Generating Magnetic Fields by Multivalued Gauge Transformations 4.4 Magnetic Monopoles 4.5 Minimal Magnetic Coupling of Particles from Multivalued Gauge Transformations 4.6 Equivalence of Multivalued Scalar and Singlevalued Vector Fields 4.7 Multivalued Field Theory of Magnetic Monopoles and Electric Currents Notes and References 5 Multivalued Fields in Superfluids and Superconductors 5.1 Superfluid Transition 5.1.1 Configuration Entropy 5.1.2 Origin of Massless Excitations 5.1.3 Vortex Density 5.1.4 Partition Function 5.1.5 Continuum Derivation of Interaction Energy 5.1.6 Physical Jumping Surfaces 5.1.7 Canonical Representation of Superfluid 5.1.8 Yukawa Loop Gas 5.1.9 Gauge Field of Superflow 5.1.10 Disorder Field Theory 5.2 Phase Transition in Superconductor 5.2.1 Ginzburg-Landau Theory 5.2.2 Disorder Theory of Superconductor 5.3 Order versus Disorder Parameter 5.3.1 Superfluid 4He 5.3.2 Superconductor 5.4 Order of Superconducting Phase Transition and Tricritical Point 5.4.1 Fluctuation Regime 5.4.2 First- or Second-Order Transition? 5.4.3 Partition Function of Superconductor with Vortex Lines 5.4.4 First-Order Regime 5.4.5 Vortex Line Origin of Second-Order Transition 5.4.6 Tricritical Point 5.4.7 Disorder Theory 5.5 Vortex Lattices Appendix 5 A Single Vortex Line in Superfluid Notes and References 6 Dynamics of Superfluids 6.1 Hydrodynamic Description of Superfluid 6.2 Velocity of Second Sound 6.3 Vortex-Electromagnetic Fields 6.4 Simple Example 6.5 Eckart Theory of Ideal Quantum Fluids 6.6 Rotating Superfluid Notes and References 7 Dynamics of Charged Superfluid and Superconductor 7.1 Hydrodynamic Description of Charged Superfluid 7.2 London Theory of Charged Superfluid 7.3 Including Vortices in London Equations 7.4 Hydrodynamic Description of Superconductor Appendix 7 A Excitation Spectrum of Superconductor 7 A.1 Gap Equation 7 A.2 Action of Quadratic Fluctuations 7 A.3 Long-Wavelength Excitations at Zero Temperature 7 A.4 Long-Wavelength Excitations at Nonzero Temperature 7 A.5 Bending Energies of Order Field 7 A.6 Kinetic Terms of Pair Field at Nonzero Temperature Appendix 7 B Properties of Ginzburg-Landau Theory of Superconductivity 7 B.1 Critical Magnetic Field 7 B.2 Two Length Scales and Type I or II Superconductivity 7 B.3 Single Vortex Line and Critical Field Hc1 7 B.4 Critical Field Hc2 where Superconductivity is Destroyed Notes and References 8 Relativistic Magnetic Monopoles and Electric Charge Confinement 8.1 Monopole Gauge Invariance 8.2 Charge Quantization 8.3 Electric and Magnetic Current-Current Interactions 8.4 Dual Gauge Field Representation 8.5 Monopole Gauge Fixing 8.6 Quantum Field Theory of Spinless Electric Charges 8.7 Theory of Magnetic Charge Confinement 8.8 Second Quantization of the Monopole Field 8.9 Quantum Field Theory of Electric Charge Confinement Notes and References 9 Multivalued Mapping from Ideal Crystals to Crystals with Defects 9.1 Defects 9.2 Dislocation Lines and Burgers Vector 9.3 Disclination Lines and Frank Vector 9.4 Defect Lines with Infinitesimal Discontinuities in Continuous Media 9.5 Multivaluedness of Displacement Field 9.6 Smoothness Properties of Displacement Field andWeingarten’s Theorem 9.7 Integrability Properties of Displacement Field 9.8 Dislocation and Disclination Densities 9.9 Mnemonic Procedure for Constructing Defect Densities 9.10 Defect Gauge Invariance 9.11 Branching Defect Lines 9.12 Defect Density and Incompatibility 9.13 Interdependence of Dislocation and Disclinations Notes and References 10 Defect Melting 10.1 Specific Heat 10.2 Elastic Energy of Solid with Defects Notes and References 11 Relativistic Mechanics in Curvilinear Coordinates 11.1 Equivalence Principle 11.2 Free Particle in General Coordinates Frame 11.3 Minkowski Geometry formulated in General Coordinates 11.3.1 Local Basis tetrads 11.3.2 Vector- and Tensor Fields in Minkowski Coordinates 11.3.3 Vector- and Tensor Fields in General Coordinates 11.3.4 Affine Connections and Covariant Derivatives 11.4 Torsion Tensor 11.5 Covariant Time Derivative and Acceleration 11.6 Curvature Tensor as Covariant Curl of Affine Connection 11.7 Riemann Curvature Tensor Appendix 11 A Curvilinear Versions of Levi-Civita Tensor Notes and References 12 Torsion and Curvature from Defects 12.1 Multivalued Infinitesimal Coordinate Transformations 12.2 Examples for Nonholonomic Coordinate Transformations 12.2.1 Dislocation 12.2.2 Disclination 12.3 Differential-Geometric Properties of Affine Spaces 12.3.1 Integrability of Metric and Affine Connection 12.3.2 Local Parallelism 12.4 Circuit Integrals in Affine Spaces with Curvature and Torsion 12.4.1 Closed-Contour Integral over Parallel Vector Field 12.4.2 Closed-Contour Integral over Coordinates 12.4.3 Closure Failure and Burgers Vector 12.4.4 Alternative Circuit Integral for Curvature 12.4.5 Parallelism in World Crystal 12.5 Bianchi Identities for Curvature and Torsion Tensors 12.6 Special Coordinates in Riemann Spacetime 12.6.1 Geodesic Coordinates 12.6.2 Canonical Geodesic Coordinates 12.6.3 Harmonic Coordinates 12.6.4 Coordinates with det(gμν) = 1 12.6.5 Orthogonal Coordinates 12.7 Number of Independent Components of Rμνλκ and Sμνλ 12.7.1 Two Dimensions 12.7.2 Thee Dimensions 12.7.3 Four or More Dimensions Notes and References 13 Curvature and Torsion from Embedding 13.1 Spacetimes with Constant Curvature 13.2 Basis Vectors 13.3 Torsion Notes and References 14 Multivalued Mapping Principle 14.1 Motion of Point Particle 14.1.1 Classical Action Principle for Spaces with Curvature 14.1.2 Autoparallel Trajectories in Spaces with Torsion 14.1.3 Equations of Motion For Spin 14.1.4 Special Properties of Gradient Torsion 14.2 Autoparallel Trajectories from Embedding 14.2.1 Special Role of Autoparallels 14.2.2 Gauss Principle of Least Constraint 14.3 Maxwell-Lorentz Orbits as Autoparallel Trajectories 14.4 Bargmann-Michel-Telegdi Equation from Torsion Notes and References 15 Field Equations of Gravitation 15.1 Invariant Action 15.2 Energy-Momentum Tensor and Spin Density 15.3 Symmetric Energy-Momentum Tensor and Defect Density Notes and References 16 Minimally Coupled Fields of Integer Spin 16.1 Scalar Fields in Riemann-Cartan Space 16.2 Electromagnetism in Riemann-Cartan Space Notes and References 17 Particles with Half-Integer Spin 17.1 Local Lorentz Invariance and Anholonomic Coordinates 17.1.1 Nonholonomic Image of Dirac Action 17.1.2 Vierbein Fields 17.1.3 Local Inertial Frames 17.1.4 Difference between Vierbein and Multivalued Tetrad Fields 17.1.5 Covariant Derivatives in Intermediate Basis 17.2 Dirac Action in Riemann-Cartan Space 17.3 Ricci Identity 17.4 Alternative Form of Coupling 17.5 Invariant Action for Vector Fields 17.6 Verifying Local Lorentz Invariance 17.7 Field Equations with Spinning Matter Notes and References 18 Covariant Conservation Law 18.1 Spin Density 18.2 Energy-Momentum Density 18.3 Covariant Derivation of Conservation Laws 18.4 Matter with Integer Spin 18.5 Relations between Conservation Laws and Bianchi Identities 18.6 Particle Trajectories from Energy-Momentum Conservation Notes and References 19 Gravitation of Spinning Matter as a Gauge Theory 19.1 Local Lorentz Transformations 19.2 Local Translations Notes and References 20 Evanescent Properties of Torsion in Gravity 20.1 Local Four-Fermion Interaction due to Torsion 20.2 No Need for Torsion in Gravity 20.3 Scalar Fields 20.3.1 Only Spin-1/2 Sources 20.4 Modified Energy-Momentum Conservation Law 20.4.1 Solution for Gradient Torsion 20.4.2 Gradient Torsion coupled to Scalar Fields 20.4.3 New Scalar Product 20.4.4 Self-Interacting Higgs Field 20.5 Summary Notes and References 21 Teleparallel Theory of Gravitation 21.1 Torsion Form of Einstein Action 21.2 Schwarzschild Solution Notes and References 22 Emerging Gravity 22.1 Gravity in the World Crystal 22.2 New Symmetry of Einstein Gravity 22.3 Gravity Emerging from Fluctuations of Matter and Radiation Notes and References Index