دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1st ed.] نویسندگان: Liping Yan, Lu Jiang, Yuanqing Xia سری: ISBN (شابک) : 9789811594250, 9789811594267 ناشر: Springer Singapore;Springer سال نشر: 2021 تعداد صفحات: XVII, 227 [229] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 7 Mb
در صورت تبدیل فایل کتاب Multisensor Fusion Estimation Theory and Application به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نظریه و کاربرد برآورد تلفیقی چندحسگر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب بر روی تئوری و روشهای اساسی تخمین حالت همجوشی دادههای چندحسگر و کاربرد آن تمرکز دارد. شامل چهار بخش با 12 فصل است. در قسمت اول، چارچوب و روش های اساسی تخمین بهینه چندحسگر و مفاهیم اساسی فیلتر کالمن به طور مختصر و سیستماتیک معرفی شده است. در بخش دوم، الگوریتمهای تخمین حالت ترکیب دادهها در محیط شبکهای معرفی شدهاند. بخش سوم شامل سه فصل است که در آن الگوریتمهای تخمین همجوشی تحت مکانیسمهای ایجاد شده توسط رویداد معرفی میشوند. بخش چهارم شامل دو فصل است که در آن تخمین همجوشی برای سیستم هایی با نویزهای غیر گاوسی اما با دم سنگین معرفی شده است. این کتاب در درجه اول برای محققان و مهندسان در زمینه ترکیب داده ها و برآورد حالت در نظر گرفته شده است. همچنین برای دانشجویان فارغ التحصیل و کارشناسی که علاقه مند به ردیابی هدف، ناوبری، کنترل شبکه ای و غیره هستند، مفید است.
This book focuses on the basic theory and methods of multisensor data fusion state estimation and its application. It consists of four parts with 12 chapters. In Part I, the basic framework and methods of multisensor optimal estimation and the basic concepts of Kalman filtering are briefly and systematically introduced. In Part II, the data fusion state estimation algorithms under networked environment are introduced. Part III consists of three chapters, in which the fusion estimation algorithms under event-triggered mechanisms are introduced. Part IV consists of two chapters, in which fusion estimation for systems with non-Gaussian but heavy-tailed noises are introduced. The book is primarily intended for researchers and engineers in the field of data fusion and state estimation. It also benefits for both graduate and undergraduate students who are interested in target tracking, navigation, networked control, etc.
Preface Acknowledgements Contents Introduction to Optimal Fusion Estimation and Kalman Filtering: Preliminaries 1 Introduction to Optimal Fusion Estimation 1.1 Definition of Multisensor Data Fusion 1.2 The Principle and Architecture of Multi-sensor Data Fusion 1.2.1 Detection Level Fusion 1.2.2 Position Level Fusion 1.2.3 Attribute Level Fusion/Target Recognition Level Fusion 1.2.4 Situation Assessment and Threat Assessment 1.3 Advantages and Disadvantages for Multisensor Data Fusion 1.4 Conclusion References 2 Kalman Filtering of Discrete Dynamic Systems 2.1 Overview of the Discrete-Time Kalman Filter 2.1.1 Prediction 2.1.2 Update 2.1.3 Alternate Forms of Updated Covariance and Kalman Gain 2.2 Properties of the Kalman Filter 2.3 Alternate Propagation of Covariance 2.3.1 Multiple State Systems 2.3.2 Divergence Issues 2.4 Sequential Kalman Filtering 2.5 Information Filtering 2.6 Summary References State Fusion Estimation for Networked Systems 3 Fusion Estimation for Linear Systems with Cross-Correlated Sensor Noises 3.1 Introduction 3.2 Problem Formulation 3.3 Linear Transformation 3.4 The Optimal State Fusion Estimation Algorithms 3.4.1 The Centralized State Fusion Estimation with Raw Data 3.4.2 The Centralized Fusion with Transformed Data 3.4.3 The Optimal State Estimation by Distributed Fusion 3.4.4 The Complexity Analysis 3.5 Numerical Example 3.6 Summary References 4 Distributed Data Fusion for Multirate Sensor Networks 4.1 Introduction 4.2 Problem Formulation 4.3 The Data Fusion Algorithms for State Estimation 4.3.1 The Centralized Fusion 4.3.2 The Sequential Fusion 4.3.3 Two-Stage Distributed Fusion 4.4 Numerical Example 4.5 Summary References 5 State Estimation for Multirate Systems with Unreliable Measurements 5.1 Introduction 5.2 Problem Formulation 5.3 The Sequential Fusion Algorithm 5.4 Numerical Example 5.5 Conclusions References 6 Distributed Fusion Estimation for Systems with Network Delays and Uncertainties 6.1 Introduction 6.2 Model and Problem Statements 6.3 Optimal Local Kalman Filter Estimator with a Buffer of Finite Length 6.4 Distributed Weighted Kalman Filter Fusion with Buffers of Finite Length 6.5 Simulation Results 6.6 Conclusion References 7 State Estimation of Asynchronous Multirate Multisensor Systems 7.1 Introduction 7.2 Problem Formulation 7.3 The Optimal State Fusion Estimation Algorithm 7.3.1 Modeling of Asynchronous, Multirate, Multisensor Systems 7.3.2 Data Fusion with Normal Measurements 7.3.3 Data Fusion with Unreliable Measurements 7.4 Numerical Example 7.5 Summary References Fusion Estimation Under Event-Triggered Mechanisms 8 Event-Triggered Centralized Fusion for Correlated Noise Systems 8.1 Introduction 8.2 Problem Formulation 8.2.1 System Model Characterization 8.2.2 Event-Triggered Mechanism of Sensors 8.3 The State Fusion Estimation Algorithm with Event-Triggered Mechanism 8.3.1 Event-Triggered Kalman Filter with Correlated Noise 8.3.2 Batch Fusion Algorithm with Correlated Noise 8.4 Numerical Example 8.5 Conclusions References 9 Event-Triggered Distributed Fusion Estimation for WSN Systems 9.1 Introduction 9.2 Problem Formulation 9.2.1 System Model Characterization 9.2.2 Event-Triggered Mechanism of Sensors 9.3 Fusion Algorithm with Event-Triggered Mechanism 9.3.1 Kalman Filter with Event-Triggered Mechanism 9.3.2 Distributed Fusion Algorithm in WSNs 9.4 Numerical Example 9.5 Conclusions References 10 Event-Triggered Sequential Fusion for Systems with Correlated Noises 10.1 Introduction 10.2 Problem Formulation 10.2.1 System Modeling 10.2.2 Event–Triggered Mechanism of Sensors 10.3 Fusion Algorithm with Event–Triggered Mechanism 10.3.1 Event–Triggered Kalman Filter with Correlated Noises 10.3.2 Event–Triggered Sequential Fusion Estimation Algorithm with Correlated Noises 10.4 Boundness of the Fusion Estimation Error Covariance 10.5 Numerical Example 10.6 Conclusions References Fusion Estimation for Systems with Heavy-Tailed Noises 11 Distributed Fusion Estimation for Multisensor Systems with Heavy-Tailed Noises 11.1 Introduction 11.2 Problem Formulation 11.3 Linear Filter and Information Filter for Systems with Heavy-Tailed Noises 11.4 The Information Fusion Algorithms 11.4.1 The Centralized Batch Fusion 11.4.2 The Distributed Fusion Algorithms 11.5 Simulation 11.6 Conclusions References 12 Sequential Fusion Estimation for Multisensor Systems with Heavy–Tailed Noises 12.1 Introduction 12.2 Problem Formulation 12.3 The Sequential Fusion Algorithm 12.4 Numerical Example 12.5 Conclusion References