دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Mark F. Horstemeyer (editor), Raj K. Prabhu (editor) سری: ISBN (شابک) : 0128181443, 9780128181447 ناشر: Academic Press سال نشر: 2021 تعداد صفحات: 278 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 38 مگابایت
در صورت تبدیل فایل کتاب Multiscale Biomechanical Modeling of the Brain به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مدلسازی بیومکانیکی چند مقیاسی مغز نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Front cover Half title Full title Copyright Contents Contributors Preface Chapter 1 - The multiscale nature of the brain and traumatic brain injury 1.1 Introduction 1.2 The brain’s multiscale structure 1.2.1 Gross anatomy 1.2.1.1 Cerebrum 1.2.1.2 Cerebellum 1.2.1.3 Diencephalon 1.2.1.4 Brainstem 1.2.2 Microanatomy 1.2.2.1 Neuroglia 1.2.2.2 Neurons 1.3 The multiscale nature of TBI 1.3.1 Multiscale injury mechanisms 1.3.2 Types of injury 1.3.3 Examples of injuries 1.3.4 Neurobehavioral sequelae 1.3.5 TBI research methods 1.3.5.1 Experiments 1.3.5.2 Computational models (simulations) 1.4 Summary References Chapter 2 - Introduction to multiscale modeling of the human brain 2.1 Introduction 2.2 Constitutive modeling of the brain 2.3 Brain tissue experiments used for constitutive modeling calibration 2.4 Modeling summary of upcoming chapters in the book 2.5 Summary References Chapter 3 - Density functional theory and bridging to classical interatomic force fields 3.1 Introduction 3.1.1 Why quantum mechanics? 3.1.2 Physical chemistry of biomechanical systems 3.2 Density functional theory 3.3 Downscaling requirements of classical force field atomistic models 3.3.1 Upscaling properties 3.4 Sample atomistic force fields formalism and development of an interatomic potential for hydrocarbons 3.4.1 MEAMBO 3.4.2 Calibration of the MEAMBO potential 3.4.3 Parameterization of the interatomic potential 3.4.4 Validation of the interatomic force fields 3.5 Summary References Chapter 4 - Modeling nanoscale cellular structures using molecular dynamics 4.1 Introduction 4.2 Methods 4.2.1 Molecular dynamics simulation method 4.2.2 Atomic force fields 4.2.3 Simulation ensembles of atoms 4.2.4 Boundary conditions 4.2.5 Current simulation details 4.2.6 Molecular dynamics analysis methods for the phospholipid bilayer (neuron membrane) 4.2.6.1 Stress–strain behavior of the neuron membrane 4.2.6.2 Image analysis for stereological quantification of neuron membrane damage 4.3 Results and discussion for the phospholipid bilayer (neuron membrane) 4.3.1 Stress–strain and damage response 4.3.2 Membrane failure limit diagram 4.4 Summary Acknowledgments References Chapter 5 - Microscale mechanical modeling of brain neuron(s) and axon(s) 5.1 Introduction 5.2 Modeling microscale neurons 5.2.1 Modeling neurons 5.2.2 Modeling mechanical behavior of axons 5.3 Summary and future References Chapter 6 - Mesoscale finite element modeling of brain structural heterogeneities and geometrical complexities 6.1 Introduction 6.1.1 Modeling length scale 6.2 Methods 6.2.1 Computational methods for properties 6.2.2 Model validation and boundary conditions 6.3 Results and discussion 6.3.1 Geometrical complexities 6.3.1.1 The effects of the sulci 6.3.1.2 Sulcus orientation 6.3.1.3 Sulcus length 6.4 Summary References Chapter 7 - Modeling mesoscale anatomical structures in macroscale brain finite element models 7.1 Introduction 7.2 Macroscale brain finite element model 7.3 Mesoscale anatomical structures and imaging techniques 7.4 The importance of structural anisotropy in macroscale models of TBI 7.5 Material-based method 7.6 Structure-based method 7.7 Summary and future perspectives References Chapter 8 - A macroscale mechano-physiological internal state variable (MPISV) model for neuronal membrane damage with ... 8.1 Introduction 8.1.1 Definitions 8.2 Membrane disruption 8.3 Development of damage evolution equation 8.3.1 Pore number density rate 8.3.2 Pore growth rate 8.3.3 Pore resealing 8.4 Garnering data from molecular dynamics simulations 8.5 Calibration of the mechano-physiological internal state variable damage rate equations 8.6 Sensitivity analysis of damage model at this length scale 8.7 Comparison of model with cell culture studies 8.8 Discussion 8.9 Summary References Chapter 9 - MRE-based modeling of head trauma 9.1 Introduction 9.2 Model formulation 9.2.1 MRE acquisition and inversion 9.2.2 Finite element mesh generation 9.2.3 Material properties 9.2.4 Experimental verification 9.3 Results and discussion 9.4 Conclusion References Chapter 10 - Robust concept exploration of driver’s side vehicular impacts for human-centric crashworthiness 10.1 Frame of reference 10.2 Problem definition 10.3 Adapted CEF for robust concept exploration 10.4 Head and neck injury criteria-based robust design of vehicular impacts 10.4.1 Clarification of design task—Step A 10.4.2 Design of experiments—Step B 10.4.3 Finite element car crash simulations for predicting injury response—Step C 10.4.3.1 Finite element model 10.4.3.2 Head injury metric analysis 10.4.3.3 Neck injury metric analysis 10.4.4 Building surrogate models—Step D 10.4.5 Formulation of robust design cDSP—Step E 10.4.6 Formulating the design scenarios, exercising the cDSP and exploration of solution space—Step E 10.5 Future: correlate human brain injury to vehicular damage 10.6 Summary References Chapter 11 - Development of a coupled physical–computational methodology for the investigation of infant head injury 11.1 Introduction 11.2 Methods 11.2.1 Pediatric head development 11.2.2 Material properties 11.2.3 Mesh convergence 11.2.4 Boundary and loading conditions 11.2.5 Global validation of the FE-head against PMHS 11.2.6 Global, regional, and local validation of the FE-head against the physical model 11.2.7 Statistical analysis 11.3 Results and discussion 11.3.1 Global validation of the FE-head versus the postmortem human surrogate 11.3.2 Global validation of the FE-head versus the physical model 11.3.3 FE-head regional and local validation versus the physical model 11.3.4 Head deformation 11.4 Summary References Chapter 12 - Experimental data for validating the structural response of computational brain models 12.1 Introduction 12.2 Methods 12.2.1 Experimental brain pressure measurements 12.2.2 Experimental brain deformation measurements 12.2.2.1 High-speed X-ray 12.2.2.2 Dynamic ultrasound 12.2.2.3 Sonomicrometry 12.2.2.4 Tagged magnetic resonance imaging 12.2.2.5 Magnetic resonance elastography 12.3 Challenges and limitations 12.4 Summary and future perspectives References Chapter 13 - A review of fluid flow in and around the brain, modeling, and abnormalities 13.1 Introduction 13.2 Flow anatomy 13.2.1 Ventricular system 13.2.2 Ventricles and subarachnoid space 13.3 Characteristic numbers 13.3.1 Reynolds number 13.3.2 Womersley number 13.3.3 Péclet number 13.4 Common brain flow abnormalities 13.4.1 Misfolded proteins 13.4.2 Injury 13.4.3 Reduced arterial pulsatility 13.4.4 Hydrocephalus 13.4.5 Chiari malformation 13.4.6 Syringomyelia and syringobulbia 13.5 Boundary conditions for models 13.5.1 General comments 13.5.2 Cardiac flow 13.5.3 Respiratory flow 13.5.4 Circulatory flow 13.5.4.1 Production—classical model 13.5.4.2 Absorption—classical model 13.5.4.3 New model 13.5.4.4 Diffusive versus advective transport 13.5.5 Intracranial pressure 13.6 Brain measurement and imaging 13.6.1 Magnetic resonance imaging 13.6.2 Spin/field/gradient echo MRI 13.6.3 Phase contrast MRI 13.6.4 MRI limitations 13.6.5 Pressure monitoring 13.6.6 MRI segmentation 13.7 Flow modeling 13.7.1 CFD simplifications: rigid walls 13.7.2 CFD simplifications: microstructures 13.7.2.1 CFD simplifications: arachnoid granulations 13.7.2.2 CFD simplifications: arachnoid trabeculae 13.7.2.3 CFD simplifications: other structures 13.8 Literature gap References Chapter 14 - Resonant frequencies of a human brain, skull, and head 14.1 Introduction 14.2 Problem set-up for the finite element simulations 14.3 Results 14.3.1 Whole head: fundamental frequency and mode shapes 14.3.2 Brain: fundamental frequency and mode shapes 14.4 Discussion 14.5 Conclusions References Chapter 15 - State-of-the-art of multiscale modeling of mechanical impacts to the human brain 15.1 Introduction 15.2 Work to be completed 15.2.1 Multiphysics aspects of the brain 15.2.2 Multiscale structure–property relationships of the brain 15.2.3 Different biological effects on the brain 15.2.4 The liquid–solid aspects of the brain 15.2.5 Different human ages 15.3 Conclusions References Index Back cover