دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Yulei He, Guangyu Zhang, Chiu-Hsieh Hsu سری: ISBN (شابک) : 1498722067, 9781498722063 ناشر: Chapman and Hall/CRC سال نشر: 2021 تعداد صفحات: 495 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 23 مگابایت
در صورت تبدیل فایل کتاب Multiple Imputation of Missing Data in Practice: Basic Theory and Analysis Strategies (Chapman & Hall/CRC Interdisciplinary Statistics) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب انتساب چندگانه داده های از دست رفته در عمل: نظریه پایه و استراتژی های تحلیل (آمار میان رشته ای چپمن و هال/CRC) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Title Page Copyright Page Dedication Contents Foreword Preface 1. Introduction 1.1. A Motivating Example 1.2. Definition of Missing Data 1.3. Missing Data Patterns 1.4. Missing Data Mechanisms 1.5. Structure of the Book 2. Statistical Background 2.1. Introduction 2.2. Frequentist Theory 2.2.1. Sampling Experiment 2.2.2. Model, Parameter, and Estimation 2.2.3. Hypothesis Testing 2.2.4. Resampling Methods: The Bootstrap Approach 2.3. Bayesian Analysis 2.3.1. Rudiments 2.3.2. Prior Distribution 2.3.3. Bayesian Computation 2.3.4. Asymptotic Equivalence between Frequentist and Bayesian Estimates 2.4. Likelihood-based Approaches to Missing Data Analysis 2.5. Ad Hoc Missing Data Methods 2.6. Monte Carlo Simulation Study 2.7. Summary 3. Multiple Imputation Analysis: Basics 3.1. Introduction 3.2. Basic Idea 3.2.1. Bayesian Motivation 3.2.2. Basic Combining Rules and Their Justifications 3.2.3. Why Does Multiple Imputation Work? 3.3. Statistical Inference on Multiply Imputed Data 3.3.1. Scalar Inference 3.3.2. Multi-parameter Inference 3.3.3. How to Choose the Number of Imputations 3.4. How to Create Multiple Imputations 3.4.1. Bayesian Imputation Algorithm 3.4.2. Proper Multiple Imputation 3.4.3. Alternative Strategies 3.5. Practical Implementation 3.6. Summary 4. Multiple Imputation for Univariate Missing Data: Parametric Methods 4.1. Overview 4.2. Imputation for Continuous Data Based on Normal Linear Models 4.3. Imputation for Noncontinuous Data Based on Generalized Linear Models 4.3.1. Generalized Linear Models 4.3.2. Imputation for Binary Data 4.3.2.1. Logistic Regression Model Imputation 4.3.2.2. Discriminant Analysis Imputation 4.3.2.3. Rounding 4.3.2.4. Data Separation 4.3.3. Imputation for Nonbinary Categorical Data 4.3.4. Imputation for Other Types of Data 4.4. Imputation for a Missing Covariate in a Regression Analysis 4.5. Summary 5. Multiple Imputation for Univariate Missing Data: Robust Methods 5.1. Overview 5.2. Data Transformation 5.2.1. Transforming or Not? 5.2.2. How to Apply Transformation in Multiple Imputation 5.3. Imputation Based on Smoothing Methods 5.3.1. Basic Idea 5.3.2. Practical Use 5.4. Adjustments for Continuous Data with Range Restrictions 5.5. Predictive Mean Matching 5.5.1. Hot-Deck Imputation 5.5.2. Basic Idea and Procedure 5.5.3. Predictive Mean Matching for Noncontinuous Data 5.5.4. Additional Discussion 5.6. Inclusive Imputation Strategy 5.6.1. Basic Idea 5.6.2. Dual Modeling Strategy 5.6.2.1. Propensity Score 5.6.2.2. Calibration Estimation and Doubly Robust Estimation 5.6.2.3. Imputation Methods 5.7. Summary 6. Multiple Imputation for Multivariate Missing Data: The Joint Modeling Approach 6.1. Introduction 6.2. Imputation for Monotone Missing Data 6.3. Multivariate Continuous Data 6.3.1. Multivariate Normal Models 6.3.2. Models for Nonnormal Continuous Data 6.4. Multivariate Categorical Data 6.4.1. Log-Linear Models 6.4.2. Latent Variable Models 6.5. Mixed Categorical and Continuous Variables 6.5.1. One Continuous Variable and One Binary Variable 6.5.2. General Location Models 6.5.3. Latent Variable Models 6.6. Missing Outcome and Covariates in a Regression Analysis 6.6.1. General Strategy 6.6.2. Conditional Modeling Framework 6.6.3. Using WinBUGS 6.6.3.1. Background 6.6.3.2. Missing Interactions and Squared Terms of Covariates in 6.6.3.3. Imputation Using Flexible Distributions 6.7. Summary 7. Multiple Imputation for Multivariate Missing Data: The Fully Conditional Specification Approach 7.1. Introduction 7.2. Basic Idea 7.3. Specification of Conditional Models 7.4. Handling Complex Data Features 7.4.1. Data Subject to Bounds or Restricted Ranges 7.4.2. Data Subject to Skips 7.5. Implementation 7.5.1. General Algorithm 7.5.2. Software 7.5.2.1. Using WinBUGS 7.6. Subtle Issues 7.6.1. Compatibility 7.6.2. Performance under Model Misspecifications 7.7. A Practical Example 7.8. Summary 8. Multiple Imputation in Survival Data Analysis 8.1. Introduction 8.2. Imputation for Censored Event Times 8.2.1. Theoretical Basis 8.2.2. Parametric Imputation 8.2.3. Semiparametric Imputation 8.2.4. Merits 8.3. Survival Analysis with Missing Covariates 8.3.1. Overview 8.3.2. Joint Modeling 8.3.3. Fully Conditional Specification 8.3.4. Semiparametric Methods 8.4. Summary 9. Multiple Imputation for Longitudinal Data 9.1. Introduction 9.2. Mixed Models for Longitudinal Data 9.3. Imputation Based on Mixed Models 9.3.1. Why Use Mixed Models? 9.3.2. General Imputation Algorithm 9.3.3. Examples 9.4. Wide Format Imputation 9.5. Multilevel Data 9.6. Summary 10. Multiple Imputation Analysis for Complex Survey Data 10.1. Introduction 10.2. Design-Based Inference for Survey Data 10.3. Imputation Strategies for Complex Survey Data 10.3.1. General Principles 10.3.1.1. Incorporating the Survey Sampling Design 10.3.1.2. Assuming Missing at Random 10.3.1.3. Using Fully Conditional Specification 10.3.2. Modeling Options 10.4. Some Examples from the Literature 10.5. Database Construction and Release 10.5.1. Data Editing 10.5.2. Documentation and Release 10.6. Summary 11. Multiple Imputation for Data Subject to Measurement Error 11.1. Introduction 11.2. Rationale 11.3. Imputation Strategies 11.3.1. True Values Partially Observed 11.3.1.1. Basic Setup 11.3.1.2. Direct Imputation 11.3.1.3. Accommodating a Specific Analysis 11.3.1.4. Using Fully Conditional Specification 11.3.1.5. Predictors under Detection Limits 11.3.2. True Values Fully Unobserved 11.4. Data Harmonization Using Bridge Studies 11.5. Combining Information fromMultiple Data Sources 11.6. Imputation for a Composite Variable 11.7. Summary 12. Multiple Imputation Diagnostics 12.1. Overview 12.2. Imputation Model Development 12.2.1. Inclusion of Variables 12.2.2. Specifying Imputation Models 12.3. Comparison between Observed and Imputed Values 12.3.1. Comparison on Marginal Distributions 12.3.2. Comparison on Conditional Distributions 12.3.2.1. Basic Idea 12.3.2.2. Using Propensity Score 12.4. Checking Completed Data 12.4.1. Posterior Predictive Checking 12.4.2. Comparing Completed Data with Their Replicates 12.5. Assessing the Fraction of Missing Information 12.5.1. Relating the Fraction of Missing Information with Model Predictability 12.6. Prediction Accuracy 12.7. Comparison among Different Missing Data Methods 12.8. Summary 13. Multiple Imputation Analysis for Nonignorable Missing Data 13.1. Introduction 13.2. The Implication of Missing Not at Random 13.3. Using Inclusive Imputation Strategy to Rescue 13.4. Missing Not at Random Models 13.4.1. Selection Models 13.4.2. Pattern Mixture Models 13.4.3. Shared Parameter Models 13.5. Analysis Strategies 13.5.1. Direct Imputation 13.5.2. Sensitivity Analysis 13.6. Summary 14. Some Advanced Topics 14.1. Overview 14.2. Uncongeniality in Multiple Imputation Analysis 14.3. Combining Analysis Results from Multiply Imputed Datasets: Further Considerations 14.3.1. Normality Assumption in Question 14.3.2. Beyond Sufficient Statistics 14.3.3. Complicated Completed-Data Analyses: Variable Selection 14.4. High-Dimensional Data 14.5. Final Thoughts Bibliography Authors Index Subject Index