دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.] نویسندگان: James R. Carpenter, Jonathan W. Bartlett, Tim P. Morris, Angela M. Wood, Matteo Quartagno, Michael G. Kenward سری: ISBN (شابک) : 1119756081, 9781119756088 ناشر: Wiley سال نشر: 2023 تعداد صفحات: 464 [467] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 9 Mb
در صورت تبدیل فایل کتاب Multiple Imputation and its Application (Statistics in Practice) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب انتساب چندگانه و کاربرد آن (آمار در عمل) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Title Page Copyright Contents Part I FOUNDATIONS Chapter 1 Introduction 1.1 Reasons for missing data 1.2 Examples 1.3 Patterns of missing data 1.3.1 Consequences of missing data 1.4 Inferential framework and notation 1.4.1 Missing completely at random (MCAR) 1.4.2 Missing at random (MAR) 1.4.3 Missing not at random (MNAR) 1.4.4 Ignorability 1.5 Using observed data to inform assumptions about the missingness mechanism 1.6 Implications of missing data mechanisms for regression analyses 1.6.1 Partially observed response 1.6.2 Missing covariates 1.6.3 Missing covariates and response 1.6.4 Subtle issues I: the odds ratio 1.6.5 Implication for linear regression 1.6.6 Subtle issues II: sub‐sample ignorability 1.6.7 Summary: when restricting to complete records is valid Summary Exercises Chapter 2 The multiple imputation procedure and its justification 2.1 Introduction 2.2 Intuitive outline of the MI procedure 2.3 The generic MI procedure 2.4 Bayesian justification of MI 2.5 Frequentist inference 2.5.1 Large number of imputations 2.5.2 Small number of imputations 2.5.3 Inference for vector &bfitbeta; 2.5.4 Combining likelihood ratio tests 2.6 Choosing the number of imputations 2.7 Some simple examples 2.7.1 Estimating the mean with σ2 known by the imputer and analyst 2.7.2 Estimating the mean with σ2 known only by the imputer 2.7.3 Estimating the mean with σ2 unknown 2.7.4 General linear regression with σ2 known 2.8 MI in more general settings 2.8.1 Proper imputation 2.8.2 Congenial imputation and substantive model 2.8.3 Uncongenial imputation and substantive models 2.8.4 Survey sample settings 2.9 Constructing congenial imputation models Discussion Exercises Part II MULTIPLE IMPUTATION FOR SIMPLE DATA STRUCTURES Chapter 3 Multiple imputation of quantitative data 3.1 Regression imputation with a monotone missingness pattern 3.1.1 MAR mechanisms consistent with a monotone pattern 3.1.2 Justification 3.2 Joint modelling 3.2.1 Fitting the imputation model 3.2.2 Adding covariates 3.3 Full conditional specification 3.3.1 Justification 3.4 Full conditional specification versus joint modelling 3.5 Software for multivariate normal imputation 3.6 Discussion 3.6 Exercises Chapter 4 Multiple imputation of binary and ordinal data 4.1 Sequential imputation with monotone missingness pattern 4.2 Joint modelling with the multivariate normal distribution 4.3 Modelling binary data using latent normal variables 4.3.1 Latent normal model for ordinal data 4.4 General location model 4.5 Full conditional specification 4.5.1 Justification 4.6 Issues with over‐fitting 4.7 Pros and cons of the various approaches 4.8 Software Discussion Exercises Chapter 5 Imputation of unordered categorical data 5.1 Monotone missing data 5.2 Multivariate normal imputation for categorical data 5.3 Maximum indicant model 5.3.1 Continuous and categorical variable 5.3.2 Imputing missing data 5.4 General location model 5.5 FCS with categorical data 5.6 Perfect prediction issues with categorical data 5.7 Software Discussion Exercises Part III Multiple imputation in practice Chapter 6 Non‐linear relationships, interactions, and other derived variables 6.1 Introduction 6.1.1 Interactions 6.1.2 Squares 6.1.3 Ratios 6.1.4 Sum scores 6.1.5 Composite endpoints 6.2 No missing data in derived variables 6.3 Simple methods 6.3.1 Impute then transform 6.3.2 Transform then impute/just another variable 6.3.3 Adapting standard imputation models and passive imputation 6.3.4 Predictive mean matching 6.3.5 Imputation separately by groups for interactions 6.4 Substantive‐model‐compatible imputation 6.4.1 The basic idea 6.4.2 Latent‐normal joint model SMC imputation 6.4.3 Factorised conditional model SMC imputation 6.4.4 Substantive model compatible fully conditional specification 6.4.5 Auxiliary variables 6.4.6 Missing outcome values 6.4.7 Congeniality versus compatibility 6.4.8 Discussion of SMC imputation 6.5 Returning to the problems 6.5.1 Ratios 6.5.2 Splines 6.5.3 Fractional polynomials 6.5.4 Multiple imputation with conditional questions or ‘skips’ Exercises Chapter 7 Survival data 7.1 Missing covariates in time‐to‐event data 7.1.1 Approximately compatible approaches 7.1.2 Substantive model compatible approaches 7.2 Imputing censored event times 7.3 Non‐parametric, or ‘hot deck’ imputation 7.3.1 Non‐parametric imputation for time‐to‐event data 7.4 Case–cohort designs 7.4.1 Standard analysis of case–cohort studies 7.4.2 Multiple imputation for case–cohort studies 7.4.3 Full cohort 7.4.4 Intermediate approaches 7.4.5 Sub‐study approach Discussion Exercises Chapter 8 Prognostic models, missing data, and multiple imputation 8.1 Introduction 8.2 Motivating example 8.3 Missing data at model implementation 8.4 Multiple imputation for prognostic modelling 8.5 Model building 8.5.1 Model building with missing data 8.5.2 Imputing predictors when model building is to be performed 8.6 Model performance 8.6.1 How should we pool MI results for estimation of performance? 8.6.2 Calibration 8.6.3 Discrimination 8.6.4 Model performance measures with clinical interpretability 8.7 Model validation 8.7.1 Internal model validation 8.7.2 External model validation 8.8 Incomplete data at implementation 8.8.1 MI for incomplete data at implementation 8.8.2 Alternatives to multiple imputation Exercises Chapter 9 Multi‐level multiple imputation 9.1 Multi‐level imputation model 9.1.1 Imputation of level‐1 variables 9.1.2 Imputation of level 2 variables 9.1.3 Accommodating the substantive model 9.2 MCMC algorithm for imputation model 9.2.1 Ordered and unordered categorical data 9.2.2 Imputing missing values 9.2.3 Substantive model compatible imputation 9.2.4 Checking model convergence 9.3 Extensions 9.3.1 Cross‐classification and three‐level data 9.3.2 Random level 1 covariance matrices 9.3.3 Model fit 9.4 Other imputation methods 9.4.1 One‐step and two‐step FCS 9.4.2 Substantive model compatible imputation 9.4.3 Non‐parametric methods 9.4.4 Comparisons of different methods 9.5 Individual participant data meta‐analysis 9.5.1 Different measurement scales 9.5.2 When to apply Rubin's rules 9.5.3 Homoscedastic versus heteroscedastic imputation model 9.6 Software Discussion Exercises Chapter 10 Sensitivity analysis: MI unleashed 10.1 Review of MNAR modelling 10.2 Framing sensitivity analysis: estimands 10.2.1 Definition of the estimand 10.2.2 Two common estimands 10.3 Pattern mixture modelling with MI 10.3.1 Missing covariates 10.3.2 Sensitivity with multiple variables: the NAR FCS procedure 10.3.3 Application to survival analysis 10.4 Pattern mixture approach with longitudinal data via MI 10.4.1 Change in slope post‐deviation 10.5 Reference based imputation 10.5.1 Constructing joint distributions of pre‐ and post‐intercurrent event data 10.5.2 Technical details 10.5.3 Software 10.5.4 Information anchoring 10.6 Approximating a selection model by importance weighting 10.6.1 Weighting the imputations 10.6.2 Stacking the imputations and applying the weights Discussion Exercises Chapter 11 Multiple imputation for measurement error and misclassification 11.1 Introduction 11.2 Multiple imputation with validation data 11.2.1 Measurement error 11.2.2 Misclassification 11.2.3 Imputing assuming error is non‐differential 11.2.4 Non‐linear outcome models 11.3 Multiple imputation with replication data 11.3.1 Measurement error 11.3.2 Misclassification 11.4 External information on the measurement process Discussion Exercises Chapter 12 Multiple imputation with weights 12.1 Using model‐based predictions in strata 12.2 Bias in the MI variance estimator 12.3 MI with weights 12.3.1 Conditions for the consistency of &bfittheta;&wHat;MI 12.3.2 Conditions for the consistency of V&wHat;MI 12.4 A multi‐level approach 12.4.1 Evaluation of the multi‐level multiple imputation approach for handling survey weights 12.4.2 Results 12.5 Further topics 12.5.1 Estimation in domains 12.5.2 Two‐stage analysis 12.5.3 Missing values in the weight model Discussion Exercises Chapter 13 Multiple imputation for causal inference 13.1 Multiple imputation for causal inference in point exposure studies 13.1.1 Randomised trials 13.1.2 Observational studies 13.2 Multiple imputation and propensity scores 13.2.1 Propensity scores for confounder adjustment 13.2.2 Multiple imputation of confounders 13.2.3 Imputation model specification 13.3 Principal stratification via multiple imputation 13.3.1 Principal strata effects 13.3.2 Estimation 13.4 Multiple imputation for IV analysis 13.4.1 Instrumental variable analysis for non‐adherence 13.4.2 Instrumental variable analysis via multiple imputation Discussion Exercises Chapter 14 Using multiple imputation in practice 14.1 A general approach 14.1.1 Explore the proportions and patterns of missing data 14.1.2 Consider plausible missing data mechanisms 14.1.3 Consider whether missing at random is plausible 14.1.4 Choose the variables for the imputation model 14.1.5 Choose an appropriate imputation strategy and model/s 14.1.6 Set and record the seed of the pseudo‐random number generator 14.1.7 Fit the imputation model 14.1.8 Iterate and revise the imputation model if necessary 14.1.9 Estimate monte carlo error 14.1.10 Sensitivity analysis 14.2 Objections to multiple imputation 14.3 Reporting of analyses with incomplete data 14.4 Presenting incomplete baseline data 14.5 Model diagnostics 14.6 How many imputations? 14.6.1 Using the jack‐knife estimate of the Monte‐Carlo standard error 14.7 Multiple imputation for each substantive model, project, or dataset? 14.8 Large datasets 14.8.1 Large datasets and joint modelling 14.8.2 Shrinkage by constraining parameters 14.8.3 Comparison of the two approaches 14.9 Multiple imputation and record linkage 14.10 Setting random number seeds for multiple imputation analyses 14.11 Simulation studies including multiple imputation 14.11.1 Random number seeds for simulation studies including multiple imputation 14.11.2 Repeated simulation of all data or only the missingness mechanism? 14.11.3 How many imputations for simulation studies? 14.11.4 Multiple imputation for data simulation Discussion Exercises A Markov Chain Monte Carlo A.1 Metropolis Hastings sampler A.2 Gibbs sampler A.3 Missing data B Probability distributions B.1 Posterior for the multivariate normal distribution C Overview of multiple imputation in R, Stata C.1 Basic multiple imputation using R C.2 Basic MI using Stata Author Index Index of Examples Subject Index EULA