دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1st ed. 2021.] نویسندگان: Pastora Gallego (editor), Israel Valverde (editor) سری: Congenital Heart Disease in Adolescents and Adults, ISBN (شابک) : 9783030619275, 3030619273 ناشر: Springer International Publishing سال نشر: 2021 تعداد صفحات: 410 زبان: English فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 62 Mb
در صورت تبدیل فایل کتاب Multimodality Imaging Innovations In Adult Congenital Heart Disease : Emerging Technologies and Novel Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نوآوریهای تصویربرداری چندوجهی در بیماریهای قلبی مادرزادی بزرگسالان: فناوریهای نوظهور و کاربردهای جدید نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface to the Series Preface Contents Part I: Emerging Imaging Techniques and Modalities 1: 3D Echocardiography 1.1 Introduction 1.2 3DE Acquisition Modes 1.3 3DE Image Optimization 1.3.1 Volume Manipulation Tools 1.3.2 Volume Slice and Edit Tools 1.3.3 Volume Viewing Functions 1.3.4 3DE Perspective and Viewing Planes 1.4 3D Echocardiography and Interventions 1.4.1 Surgical Guidance 1.4.2 Interventional Cath Guidance 1.4.3 Echocardiographic-Fluoroscopic Fusion 1.5 Future Directions References 2: Ultrafast Ultrasound Imaging 2.1 Introduction to Ultrasound 2.2 Ultrafast Ultrasound Imaging 2.3 Limitations of Conventional Ultrasound Imaging in Congenital and Pediatric Cardiology 2.4 Technological Tools Now Available Using Ultrafast Imaging 2.4.1 Visualization of Blood Flow 2.4.1.1 Vector Flow Imaging 2.4.1.2 Coronary Ultrafast Doppler Angiography (CUDA) 2.4.2 Visualization of Tissue Motion 2.4.2.1 Shear Wave Imaging 2.4.2.2 Electromechanical Wave Imaging (EWI) 2.4.3 Tissue Structure and Fiber Orientation 2.5 Clinical Applications of Ultrafast Ultrasound Imaging 2.5.1 Ventricular Function 2.5.2 Evaluating Coronary Perfusion and Cardiac Structure in CHD 2.5.3 Rhythm Abnormalities 2.5.4 Future Directions 2.5.5 Current Limitation of HFRUS 2.6 Summary/Conclusion References 3: MRI T1 Mapping: Myocardial Fibrosis 3.1 Introduction 3.2 Physics Principles 3.2.1 What Is T1, Native vs Post-contrast 3.2.2 T1 Mapping Sequences 3.2.2.1 Magnetisation Preparation Based Methods Inversion Recovery Methods Saturation Recovery Image Readout, Spatial Coverage, and Resolution 3.2.3 Interpretation 3.2.3.1 Native Tissue 3.2.3.2 ECV Fraction 3.3 Clinical Applications 3.3.1 Tetralogy of Fallot 3.3.2 Ebstein Anomaly 3.3.3 The Systemic Right Ventricle 3.3.4 Cardiac Transplant 3.3.5 Aortic Stenosis 3.4 Summary References 4: MR Lymphatic Imaging of Thoracic Lymphatic Disorders 4.1 Introduction 4.2 DCMRL Technique 4.2.1 Placement of the Intranodal Needles 4.2.2 Transport of the Patient into the MR Suit 4.2.3 Coil Coverage 4.2.4 Contrast Injection 4.2.5 MR Sequences 4.2.6 The Contribution of Each MR Sequence 4.2.6.1 T2W Imaging 4.2.6.2 Fast Acquisition T1 Angiography Imaging 4.2.6.3 High-Resolution T1-Delayed Angiographic Sequences 4.2.6.4 Alternative MR Lymphangiography Imaging 4.3 Applications of the MR Lymphangiography 4.4 Conclusion 4.5 Appendix: DCMRL Technique for Chest Lymphatic Pathology References 5: MRI-Based Catheterization Laboratory 5.1 Background and Rationale 5.2 MRI Catheter Laboratories in Practice 5.2.1 Practical Considerations 5.2.2 Safety 5.2.3 Communication 5.2.4 ECG 5.2.5 Haemodynamic Monitoring 5.2.6 X-ray Coils 5.3 Visualisation and Image Interrogation 5.4 Passive Visualisation 5.5 Active Catheter Tracking and Visualization 5.5.1 Catheters and Guidewires 5.6 Clinical Applications of iCMR 5.6.1 Diagnostic MRI Catheterisation 5.6.1.1 Haemodynamic Assessments by XMR 5.6.1.2 Pulmonary Vascular Resistance (PVR and Fick) 5.6.1.3 Cardiac Performance and Output 5.6.2 MRI-Guided Interventions 5.6.3 MRI-Guided Electrophysiology (EP) 5.6.4 Other Applications 5.7 Future Directions References 6: Cardiac Mechanics I: 3D Speckle Tracking Echocardiography 6.1 Introduction 6.2 Myocardial Deformation 6.3 Myocardial Deformation Patterns in Cardiac Conditions 6.3.1 Abnormal Segmental Contractility/Loading 6.3.2 Volume Overload 6.3.3 Pressure Overload 6.3.4 (Genetic) Cardiomyopathies 6.3.5 Abnormal Activation 6.4 3D Strain 6.4.1 Advantages as Compared to 2D 6.4.2 Current Limitations of 3D Strain 6.5 Changes with Congenital Heart Disease: Examples 6.5.1 Healthy Individual 6.5.2 Tetralogy of Fallot (TOF) 6.5.3 Ebstein Anomaly (EA) 6.5.4 Congenitally Corrected Transposition of the Great Arteries 6.6 Conclusion References 7: Cardiac Mechanics II: 2D and 3D Tissue Tracking MRI 7.1 Introduction 7.2 Basic Principles 7.3 Established Clinical Applications 7.4 Prognostic Implications 7.5 Moving Towards 3D Applications: Future Directions of FT 7.6 Conclusion References 8: 4D Flow MRI: Flow Dynamics 8.1 Introduction 8.2 Imaging Methods 8.2.1 Acquisition 8.2.2 Processing 8.3 Applications 8.3.1 Shunt or Leak 8.3.2 Vascular or Valve Stenosis 8.3.3 Valvular Flow and Regurgitation 8.3.4 Vessel Flow Patterns and Distribution 8.3.5 Ventricular Hemodynamics 8.4 Challenges and Outlook References 9: Computational Fluid Dynamics 9.1 Introduction 9.2 CFD Process for Medical Application 9.2.1 Overview 9.2.2 Anatomy 9.2.3 Material Properties 9.2.4 Boundary Conditions 9.2.5 Solver Details and Control Parameters 9.2.6 Post-processing, Interpretation and Reporting 9.3 CFD for Congenital Heart Disease 9.4 Summary, Challenges and the Future of CFD in Cardiovascular Medicine References 10: 3D Printing and Holography 10.1 Introduction 10.2 How to Create a Patient-Specific 3D Representation of the Heart 10.2.1 Image Acquisition: What Type of Image Is Needed? 10.2.2 Image Segmentation 10.2.3 3D Printing Technologies and Materials 10.2.4 Computer-Generated Holography 10.3 Applications in Congenital Heart Disease 10.3.1 Clinical Practice 10.3.1.1 Surgical Planning 10.3.1.2 Cardiac Catheterization: Interventional Planning and Performance 10.3.2 Education and Training 10.3.3 Communication with Patients and Relatives 10.4 Limitations and Future Directions References Part II: Novel Applications to ACHD 11: Cardiac Shunts 11.1 Overview 11.1.1 Shunt Anatomy 11.1.1.1 Pre-tricuspid Shunt Defects 11.1.1.2 Post-tricuspid Shunt Defects 11.1.1.3 Shunt Direction 11.1.1.4 Shunt Magnitude 11.1.1.5 Intrapulmonary Shunts 11.1.2 Volume Overload 11.1.3 Pressure Overload 11.1.4 Associated Lesions 11.1.5 Confounders in Shunt Assessment 11.2 Modalities Used in Shunt Evaluation 11.3 Echocardiography 11.3.1 Delineation of Shunt Anatomy and Flow Direction 11.3.1.1 2D and 3D Echocardiography 11.3.1.2 Color Doppler 11.3.1.3 Contrast Studies 11.3.2 Flow Assessment 11.3.2.1 Simplified Bernoulli’s Equation 11.3.2.2 Doppler Modalities 11.3.3 Quantification of Shunt Magnitude 11.3.3.1 Atrial and Ventricular Volumes and Function 11.3.3.2 Ventricular and Arterial Pressure Load 11.3.3.3 Qp:Qs Assessment 11.3.4 Strengths and Limitations 11.4 Transesophageal Echocardiography 11.5 Cardiac Catheterization 11.5.1 Basic Principles 11.5.2 Shunt Evaluation 11.5.3 Pulmonary and Systemic Vascular Resistance 11.5.4 Strengths 11.5.5 Limitations 11.6 Cardiac Magnetic Resonance Imaging 11.6.1 Basic Principles 11.6.2 Shunt Evaluation 11.6.3 Anatomy 11.6.4 Strengths 11.6.5 Limitations 11.7 Computed Tomography Angiography 11.7.1 Strengths 11.7.2 Limitations 11.8 Nuclear Medicine Imaging 11.9 Multimodality Imaging in Evaluating Shunt Defects References 12: Repaired Tetralogy of Fallot 12.1 Introduction: Role of Imaging in the Assessment of Pathophysiology and Risk Stratification in Repaired Tetralogy of Fallot 12.2 Imaging Methods 12.2.1 Echocardiography 12.2.2 Cardiac MRI 12.2.3 Cardiac CT 12.3 Advanced Imaging 12.3.1 Deep Learning Imaging Analysis 12.3.2 Virtual Surgery for RVOT and Conduit Reconstruction 12.3.3 3D Modeling 12.4 Challenges and Outlook References 13: Aortic Disease: Bicuspid Aortic Valve, Aortic Coarctation, Marfan Syndrome 13.1 Introduction 13.2 Background 13.2.1 Bicuspid Aortic Valve 13.2.2 Marfan Syndrome 13.2.3 Coarctation of the Aorta 13.3 Multimodality Imaging Assessment 13.3.1 Echocardiography 13.3.2 Cardiovascular Magnetic Resonance Imaging 13.3.3 Computed Tomography 13.4 Innovations Based on Multimodality Imaging 13.4.1 Four-Dimensional Flow Magnetic Resonance Imaging 13.4.1.1 4D Flow in Aortic Coarctation 13.4.1.2 4D Flow in BAV 13.4.1.3 4D Flow in Marfan Syndrome 13.4.2 Computational Fluid Dynamics 13.4.3 Statistical Shape Modelling 13.4.4 Ventriculo-Vascular Coupling 13.4.5 Virtual Stenting 13.4.6 Three-Dimensional Printing 13.5 Conclusions References 14: Transposition of the Great Arteries Repaired by Arterial Switch Operation 14.1 Long-Term Results and Surveillance After Arterial Switch Operation 14.2 Cardiac Magnetic Resonance Imaging 14.2.1 Evaluation of Aortic Root Dilatation and Biomechanics 14.2.2 Evaluation of the Right Ventricle Outflow Track and Pulmonary Arteries 14.2.3 Evaluation of Myocardial Perfusion 14.2.4 Follow-up Interval 14.3 Computed Tomography 14.3.1 CT Acquisition Protocol 14.3.1.1 Contrast Injection 14.3.1.2 Gating Management 14.3.1.3 Dose Management 14.3.2 Indication and Reporting Elements 14.3.2.1 Coronary Arteries 14.3.2.2 RVOT and Great Vessels References 15: The Systemic Right Ventricle 15.1 Introduction 15.2 Imaging Goals 15.3 Strain 15.4 Myocardial Fibrosis 15.4.1 Late Gadolinium Enhancement 15.4.2 Extracellular Volume Fraction 15.4.3 Other Emerging Techniques 15.5 Conclusions References 16: Univentricular Heart: Staged Palliation 16.1 Basic Principles of Staged Palliation in Univentricular Hearts 16.1.1 Surgical Palliation for UVH 16.2 Imaging Modalities and Their Applications 16.2.1 Three-Dimensional Echocardiography 16.2.2 Speckle Tracking Echocardiography 16.2.3 Feature Tracking CMR 16.2.4 CMR T1 Mapping 16.2.5 CMR 4D Flow 16.3 Computational Fluid Dynamics 16.4 3D Printing 16.5 Imaging of Liver Fibrosis References 17: Electrophysiology Interventional Planning 17.1 Introduction 17.1.1 Role of Cardiac Imaging in Congenital Heart Disease 17.1.2 Imaging in Atrial Arrhythmia in Adult Congenital Heart Disease 17.1.2.1 Cardiac Imaging in Vascular Access and Underlying Anatomy 17.1.2.2 Identification of Arrhythmogenic Substrate 17.1.2.3 Cardiac Imaging During Ablation Procedure 17.1.3 Imaging in Ventricular Arrhythmias in Adult Congenital Heart Disease 17.1.3.1 Cardiac Imaging Pre VT Ablation Procedure: Arrhythmogenic Substrate in ACHD 17.1.4 Cardiac Resynchronization Therapy in Congenital Heart Disease 17.1.4.1 CRT in Congenital Heart Disease 17.1.4.2 Effects of CRT on Systemic Ventricle Ejection Fraction 17.1.4.3 Effects of CRT on Right Ventricle Dyssynchrony and Function 17.1.4.4 Single Ventricle and CRT 17.1.4.5 Current Recommendations 17.1.4.6 Cardiac Imaging to Guide CRT Implant 17.2 Conclusions References 18: Structural Interventional Planning 18.1 Introduction 18.2 Echocardiography 18.3 Cardiac Computed Tomography 18.4 Cardiac Magnetic Resonance Imaging 18.5 Future Directions References 19: Ebstein Anomaly 19.1 Introduction 19.2 Diagnosis and Classification 19.2.1 Diagnostic Features 19.2.2 Classification Schema 19.3 Assessment of Tricuspid Regurgitation Severity and Ventricular Function 19.3.1 Tricuspid Regurgitation Severity 19.3.2 Ventricular Function 19.4 Evaluation of Tricuspid Valve for Repair or Replacement 19.5 Preoperative Assessment 19.6 Intraoperative and Early Postoperative Assessment 19.7 Long-Term Surveillance 19.8 Conclusion References 20: Pulmonary Hypertension 20.1 Introduction 20.1.1 The Cardiopulmonary Unit 20.1.2 PH Diagnosis 20.1.3 Treatment Monitoring 20.1.4 Prognostic Assessment 20.2 Imaging Techniques in Pulmonary Hypertension 20.2.1 Echocardiography 20.2.1.1 Three-Dimensional (3D) Echocardiography 20.2.1.2 Deformation: Speckle Tracking Strain 20.2.2 Single-Photon Emission Computed Tomography (SPECT) 20.2.2.1 Myocardial Perfusion 20.2.2.2 Lung Perfusion 20.2.3 Dual Energy Computed Tomography (DECT) 20.2.4 Magnetic Resonance Imaging (MRI) 20.2.4.1 Myocardial Deformation (Strain) 20.2.4.2 Lung Perfusion 20.2.4.3 4D-Flow 20.2.4.4 T1-Mapping 20.2.5 Positron-Emission Tomography 20.2.6 Optical Coherence Tomography 20.3 Conclusions References