دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Raghvendra Kumar, Rohit Sharma, Prasant Kumar Pattnaik سری: Studies in Big Data, 79 ISBN (شابک) : 9789811579646, 9789811579653 ناشر: Springer Singapore سال نشر: 2021 تعداد صفحات: 208 [216] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 8 Mb
در صورت تبدیل فایل کتاب Multimedia Technologies in the Internet of Things Environment به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فن آوری های چند رسانه ای در محیط اینترنت اشیا نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب رویکردی نظری و عملی را در زمینه کاربردهای چند رسانه ای و IOT و تحلیل عملکرد ارائه می دهد. علاوه بر این، ارتباطات چند رسانه ای، مدل های یادگیری عمیق به داده های چند رسانه ای و رویکردهای جدید (IOT) نیز پوشش داده شده است. این چارچوب عملکردی کامل در زمینه داده های چند رسانه ای، IOT و تکنیک های محاسبات هوشمند را مورد توجه قرار می دهد. این کتاب مروری جامع از کار تحقیقاتی پیشرفته در مورد تجزیه و تحلیل چند رسانه ای در برنامه های کاربردی IOT ارائه می دهد. این پل شکاف بین مفاهیم و راه حل های چند رسانه ای را با ارائه چارچوب های IOT فعلی، کاربردهای آن ها در تجزیه و تحلیل چند رسانه ای، نقاط قوت و محدودیت های روش های موجود و جهت گیری های آینده در تجزیه و تحلیل IOT چند رسانه ای ایجاد می کند.
This book provides theoretical and practical approach in the area of multimedia and IOT applications and performance analysis. Further, multimedia communication, deep learning models to multimedia data and the new (IOT) approaches are also covered. It addresses the complete functional framework in the area of multimedia data, IOT and smart computing techniques. The book proposes a comprehensive overview of the state-of-the-art research work on multimedia analysis in IOT applications. It bridges the gap between multimedia concepts and solutions by providing the current IOT frameworks, their applications in multimedia analysis, the strengths and limitations of the existing methods, and the future directions in multimedia IOT analytics.
Preface About This Book Key Features Contents Editors and Contributors Smart Control and Monitoring of Irrigation System Using Internet of Things 1 Introduction 2 Devices Used 2.1 IoT Context for Smart Irrigation 2.2 Water Flow Sensor 2.3 Soil Moisture 3 Proposed Methodology 4 Results and Discussion 5 Conclusion References Blockchain-Based Cyberthreat Mitigation Systems for Smart Vehicles and Industrial Automation 1 Introduction 2 Cyberthreat Problems in Smart Vehicles 2.1 Denial of Service (DoS) Attack 2.2 Vehicular Cloud 2.3 Masquerading Attack and Sybil 2.4 The Risk of Communicating V2X 2.5 Wormhole Attack 2.6 Replay Attack 2.7 Malicious Software (Malware) 3 Blockchain Overview 3.1 Background 3.2 Types of Blockchains 3.3 Inherent Characteristics of Blockchain 3.4 How Blockchain Works on Trusted Networks 4 Blockchain to the Rescue 4.1 Blockchain in Vehicular Networks 4.2 Blockchain in Automotive Sector 4.3 Smart Vehicles Based on Blockchain 4.4 Blockchain for Industry 4.0 Applications 5 Issues in Distributed Ledger Technology (DLT)/Blockchain 5.1 Scalability 5.2 Computing Capacity and Transaction Rate 5.3 Transparency 5.4 Privacy 5.5 The Region of Ground transportation/The Internet Is Internationally Synchronized 5.6 Cyberattacks Risk 6 Future Issues and Challenges 7 Conclusion References IT Convergence-Related Security Challenges for Internet of Things and Big Data 1 Introduction 2 Methods and Materials 3 Results and Discussion 4 Conclusion References Applicability of Industrial IoT in Diversified Sectors: Evolution, Applications and Challenges 1 Introduction 2 Evolution of Industrial Internet of Things 3 Revolution in Industrial Sector 4 IIoT via IoT 5 IIoT Architecture 6 Collaboration of Industry 4.0 and IIoT 6.1 IIoT and Industrial Automation 6.2 Cybersecurity and Data Analytics in IIoT 7 Case Studies and Applications 7.1 Case Study 7.2 Applications of IIoT in Business Domain 7.3 Collaboration of Blockchain with IIoT 8 Security Challenges Involved in IIoT 9 Conclusion References Recent Emerging Technologies for Intelligent Learning and Analytics in Big Data 1 Introduction 2 Promising Concepts for Big Data 2.1 Camel 2.2 Drill 2.3 Hive 2.4 Ignite 2.5 Impala 2.6 Kerby 2.7 Maven 2.8 Petri 2.9 PLC4X 2.10 Presto 2.11 Spark 3 Big Data Definition Compared to Past 3.1 5V Concept 4 Aggregation and Classification of Big Data 5 Big Data Analytics 6 Conventional and Machine Learning for Data Stream 7 Big Data for Educational Use Cases 8 Conclusions References Real-Time Health System (RTHS) Centered Internet of Things (IoT) in Healthcare Industry: Benefits, Use Cases and Advancements in 2020 1 Introduction 1.1 Toward a More Cohesive and Advanced IoT-Enabled eHealth Veracity 2 The Massive Landscape of Healthcare Stakeholders and IoT Prospects 3 Hastening in All IoT Use Case and Applications in Healthcare Upfront 4 IoT in the Framework of Healthcare Revolution and the Challenges of Information-Driven Healthcare 5 The IoT in Healthcare: Use Cases and Major Developments 6 Conclusion and Imminent IoT Healthcare in 2020 References Building Intelligent Integrated Development Environment for IoT in the Context of Statistical Modeling for Software Source Code 1 Introduction 2 Overview of the Integrated Development Environment 3 Open Source Ecosystem for IoT in an Integrated Platform 4 Integrated IoT Application Development Platform Architecture 5 IoT Application Development Platform Features 6 Evaluation 6.1 Summarization 6.2 Faster Feature Engineering for IDE 6.3 Intelligent IDE for IoT with Statistical Source Code Modeling References Visualization of COVID-19 Pandemic: An Analysis Through Machine Intelligent Technique Toward Big Data Paradigm 1 Introduction 2 Related Works 3 Fundamental of Big Data 3.1 Types of Data 3.2 Big Data Ecosystem Components 3.3 Applications of Big Data 4 Pandemic: Perspectives of Big Data 5 Mathematical Analytics 6 Data Preparation 7 Results and Simulations 8 Discussion 9 Conclusion References Multimedia Security and Privacy on Real-Time Behavioral Monitoring in Machine Learning IoT Application Using Big Data Analytics 1 Introduction 2 IoMT Visualization 3 IoMT in Multimedia Detecting 4 Major Security Challenges Related with IoT Layered Design 4.1 Security Dangers on the Perceptual Layer 4.2 Security Dangers on the Transport Layer 4.3 Security Dangers on the Application Layer 5 Security of Multimedia in IoT 6 Proposed Interactive Media Security Engineering in IoT 7 Automated Open Security 8 Conclusion and Future Work References A Robust Approach with Text Analytics for Bengali Digit Recognition Using Machine Learning 1 Introduction 1.1 Need for Text Analytics 1.2 Challenges 1.3 Applications 2 Literature Review 2.1 Dataset 2.2 Image Resizing and Alignment Tuning 2.3 Image Augmentation 2.4 CNN Model Architecture and Training Parameters 3 Result Analysis 4 Conclusion References Internet of Things-Based Security Model and Solutions for Educational Systems 1 Introduction 2 Background 2.1 Internet of Things 2.2 Data Flow in IoT Environment 2.3 Learning Analytics (LA) 2.4 Learning Analysis System (LAS) 2.5 The IoT-Based Educational Model 2.6 The Architecture of IoT-Based Education System 3 The Proposed Architecture of Base IoT Environment 3.1 The Proposed Architecture of IoT-Based Educational System 4 IoT Threats and Attacks Based on the Taxonomy of the IoT 4.1 Labeling of Security Issues 4.2 Security Issues in Physical Level 4.3 Security Issues in Middle Level 4.4 Security Issues in Logical Level 5 Results and Discussion 5.1 Error Estimation 5.2 Research Questions 5.3 Deep Learning 5.4 Proposed Model for Deep Belief Layer 5.5 Proposed Model for Deep Learning-Based Binary Classification Model 5.6 Proposed Model for Deep Learning-Based Intrusion Detection System 5.7 EdgeSec Technique 6 Conclusion and Future Scope References Author Index