دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Troy McDaniel (editor). Xueliang Liu (editor)
سری:
ISBN (شابک) : 3030707156, 9783030707156
ناشر: Springer
سال نشر: 2021
تعداد صفحات: 310
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 10 مگابایت
در صورت تبدیل فایل کتاب Multimedia for Accessible Human Computer Interfaces به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب چند رسانه ای برای رابط های کامپیوتری انسانی در دسترس نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Foreword Preface Contents About the Editors Part I Vision-Based Technologies for Accessible Human Computer Interfaces A Framework for Gaze-Contingent Interfaces 1 Introduction 1.1 Gaze-Contingent Interface 1.2 Eye Tracking and Gaze Detection 1.3 Gaze-Contingent Interface Based on Near Infrared Camera of Mobile Device 2 Methods 2.1 Framework 2.2 Calibration and Standard Acquisition 2.3 Determination of Sagittal Plane 2.4 Calculation of POG with Head Adjustment 2.5 Gaze Prediction by LSTM 2.6 Measurement of Head and Eye Movements 3 Use Cases 3.1 Use Case #1: Select an Option on Screen 3.2 Use Case #2: Auto Screen Scrolling 4 Future Work References Sign Language Recognition 1 Online Early-Late Fusion Based on Adaptive HMM for Sign Language Recognition 1.1 Introduction 1.2 Adaptive HMMs 1.3 Early-Late Fusion 1.3.1 Feature Selection 1.3.2 Query-Adaptive Weighting 1.3.3 Score Fusion 1.4 Experiments 1.4.1 Experiments Setup 1.4.2 Experiment with HMM-States Adaptation 1.4.3 Comparison on Different Fusion Steps 1.4.4 Comparison on Different Dataset Sizes 1.4.5 Comparison on Different SLR Models 2 Hierarchical LSTM for Sign Language Translation 2.1 Introduction 2.2 Online Key Clip Mining 2.3 Hierarchical LSTM Encoder 2.3.1 Hierarchical Encoder 2.3.2 Pooling Strategy 2.3.3 Attention-Based Weighting 2.4 Sentence Generation 2.5 Experiment 2.5.1 Experiment Setup 2.5.2 Model Validation 2.5.3 Comparison to Existing Methods 3 Dense Temporal Convolution Network for Sign Language Translation 3.1 Introduction 3.2 DenseTCN 3.3 Sentence Learning 3.3.1 CTC Decoder 3.3.2 Score Fusion and Translation 3.4 Experiments 3.4.1 Datasets 3.4.2 Evaluation Metrics 3.4.3 Implementation Details 3.4.4 Depth Discussion 3.4.5 Comparison 4 Joint Optimization for Translation and Sign Labeling 4.1 Introduction 4.2 Clip Feature Learning in Videos 4.3 Joint Loss Optimization 4.3.1 CTC Loss for CTTR Module 4.3.2 Cross-Entropy Loss for FCLS Module 4.3.3 Triplet Loss for FCOR Module 4.4 Experiment 4.4.1 Experiment Setup 4.4.2 Model Validation 4.4.3 Main Comparison References Fusion-Based Image Enhancement and Its Applicationsin Mobile Devices 1 Introduction 2 Related Works 3 Fusion-Based Enhancement Models 3.1 A General Framework of Linear Fusion 3.2 Naturalness-Preserving Low-Light Enhancement 3.3 Mixed Pencil Drawing Generation 4 Applications in Mobile Devices 4.1 FFT Acceleration 4.2 Interactive Segmentation 4.3 Experimental Results 5 Conclusion and Discussion References Open-Domain Textual Question Answering Systems 1 Introduction 2 Overview of Open-Domain Question Answering Systems 3 Paragraph Ranking 3.1 Multi-Level Fused Sequence Matching Model 3.1.1 Multi-Level Fused Encoding 3.1.2 Attention Model with Alignment and Comparison 3.1.3 Aggregation and Prediction 3.2 Evaluation 4 Candidate Answer Extraction 4.1 Dynamic Semantic Discard Reader 4.1.1 Feature Encoding 4.1.2 Attention Matching 4.1.3 Dynamic Discard 4.1.4 Information Aggregation 4.1.5 Prediction 4.2 Reinforced Mnemonic Reader 4.2.1 RC with Reattention 4.2.2 Dynamic-Critical Reinforcement Learning 4.2.3 End-to-End Architecture 4.3 Read and Verify System 4.3.1 Reader with Auxiliary Losses 4.3.2 Answer Verifier 4.4 Evaluations 5 Answer Selection Module 5.1 RE3QA: Retrieve, Read and Rerank 5.1.1 Answer Reranker 5.1.2 End-to-End Training 5.2 Multi-Type Multi-Span Network for DROP 5.2.1 Multi-Type Answer Predictor 5.2.2 Multi-Span Extraction 5.2.3 Arithmetic Expression Reranking 5.3 Evaluations 6 Conclusion References Part II Auditory Technologies for Accessible Human Computer Interfaces Speech Recognition for Individuals with Voice Disorders 1 Motivation and Introduction 1.1 Voice Interaction Is Here to Stay 1.2 Accessibility Considerations in Voice Interaction 2 Definitions and Concepts 3 A Brief Introduction to Phonetics and Acoustics 3.1 Speech Production 3.1.1 Production of Disordered Speech 3.2 Speech Perception 3.3 Speech Parameterization Methods 3.4 Markers of Disordered Speech 4 Automatic Speech Recognition Overview 4.1 Characterization of ASR Systems 4.1.1 Speaker Dependence 4.1.2 Continuity 4.1.3 Vocabulary Size 4.2 Nomenclature of Disordered Speech Recognition 4.3 The Ideal System 4.4 Levels of Difficulty in ASR Tasks 4.4.1 Level 1 ASR 4.4.2 Level 2 ASR 4.4.3 Level 3 ASR 4.4.4 Level 4 ASR 5 A Level by Level Guide of ASR Modeling Approaches 5.1 Level 1 ASR: Clear and Clean Speech Recognition 5.1.1 Multimodels 5.1.2 End-to-End Models 5.2 Level 2 ASR: Noisy but Clear Speech Recognition 5.2.1 Data Augmentation 5.2.2 Transfer Learning 5.2.3 Multimodal ASR 5.3 Level 3 ASR: Clean but Unclear Speech Recognition 5.3.1 Data Augmentation 5.3.2 Multimodal Techniques 5.3.3 Voice Conversion and Speaker Normalization 5.4 Level 4 ASR 6 Disordered Speech Datasets 6.1 Acoustic Datasets 6.1.1 Dysarthric Speech Dataset for Universal Access (UASPEECH) 6.1.2 The TORGO Database 6.1.3 The Nemours Database of Dysarthric Speech 6.1.4 The HomeService Corpus 6.1.5 UncommonVoice 6.1.6 Parkinson\'s Disorder Speech Dataset 7 Utility and Applications of Disorder-Robust ASR 7.1 Clinical Metrics 7.2 Voice Assistive Technologies 7.3 Improvement of Everyday Voice Interactions 8 Conclusions References Socially Assistive Robots for Storytelling and Other Activities to Support Aging in Place 1 Introduction 2 Technology to Assist with Aging in Place 2.1 Smart Homes and Safety 2.2 Technologies to Encourage Fitness 3 Technology for Communication 3.1 Robotic Pets 4 Socially Assistive Robots 4.1 Existing Technologies 4.2 How Robots Can Address Isolation References Part III Haptic Technologies for Accessible Human Computer Interfaces Accessible Smart Coaching Technologies Inspired by ElderlyRequisites 1 Introduction 2 A Review of Accessible Technology in Healthcare 3 Novel Wearable Healthcare Technologies Using Pneumatic Gel Muscle (PGM) 3.1 Pneumatic Gel Muscle (PGM) 3.1.1 Overview 3.1.2 Force Characteristics 3.2 A Soft Exoskeleton Jacket for Remote Human Interaction 3.2.1 Motivation 3.2.2 System Description 3.2.3 Measurement of Force During Shoulder Abduction and Elbow Flexion 3.2.4 Latency Measurement 3.3 A Soft Wearable Balance Exercise Device 3.3.1 Motivation 3.3.2 System Description 3.3.3 Evaluation of the Prototype Through a Single-Leg Stance Test 3.4 Swing Support System Using Wireless Actuation of PGMs 3.4.1 Motivation 3.4.2 System Description 3.4.3 Evaluation of the Prototype Through Measurement of Various Lower Limb Parameters 4 Stealth Adaptive Exergame Design Framework 4.1 Fruit Slicing Exergame Design 4.2 Ski Squat Exergame Design 4.2.1 System Description of Ski Exergame 4.2.2 sEMG Measurement to Detect the Effect of PGM Based Muscle Loading 5 An IMU-Based Assessment of Brushed Body Area 5.1 Motivation 5.2 System Description 5.3 Calculation of the Contact Area Between Brush and Body Based on Distance Metrics 5.4 Comparison of Predicted and Actual Contact Area 6 Conclusion References Haptic Mediators for Remote Interpersonal Communication 1 Introduction 2 Social Touch 2.1 Hugging 2.2 Handshaking 2.3 Patting, Tapping, and Stroking 2.4 Massaging 3 Non-verbal Communication 3.1 Facial Features and Emotions 3.2 Body Movements and Gestures 4 Verbal Communication 4.1 Emphasis, Attention and Turn Taking 4.2 Haptic Messaging 5 Conclusions and Future Directions References Part IV Multimodal Technologies for Accessible Human Computer Interfaces Human-Machine Interfaces for Socially Connected Devices: From Smart Households to Smart Cities 1 Introduction 1.1 Smart Community 1.2 Smart Home 1.3 Socially Connected Products 1.4 Gamification 1.4.1 Energy Adapted Octalysis Framework 2 Multisystem: Data Fusion 2.1 ANFIS: Adaptive Neuro-Fuzzy Inference Systems 2.2 Topology Proposed: Detection of Gamified Motivation at Home for Saving Energy 2.3 Input 1: Level of Energy Consumption 2.4 Input 2: Type of Environmental Home 2.5 Output: Gamified Motivation (Local Point of View) 2.5.1 Community Gamified motivation\'s Detection (Global Point of View) 3 Proposal 3.1 Input 1: Level of Energy Consumption 3.2 Input 2: Type of Environmental Home 3.3 Output: Gamified Motivation (Local Point of View) 4 Results 5 HMI to Improve the Quality of Life of Older People Using the Proposed Structure 6 From Citizen to Smart City: A Future Vision 6.1 Smart City Vision in a COVID-19 Context 7 Discussion 8 Conclusion References Enhancing Situational Awareness and Kinesthetic Assistance for Clinicians via Augmented-Reality and Haptic Shared-Control Technologies 1 Intraoperative Situational Awareness 1.1 Visual Guidance 1.2 Haptic Guidance 1.3 Applications of Visual and Haptic Guidance in Surgery 2 Background 2.1 Biopsy 2.2 Mandible Reconstruction 3 Visual Guidance Technologies 3.1 Augmented Reality Display 3.2 Monitor-Based 2D Display 4 Haptic Guidance 4.1 Admittance Control 5 Experimental Setup for Demonstration Assistive Systems 5.1 Experimental Percutaneous Biopsy Setup 5.2 Experimental Fibula Osteotomy Setup References