دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: Tom A. B. Snijders
سری:
ISBN (شابک) : 2011926498, 9781849202015
ناشر:
سال نشر: 2011
تعداد صفحات: 521
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 7 مگابایت
در صورت تبدیل فایل کتاب Multilevel Analysis: An Introduction To Basic And Advanced Multilevel Modeling به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تجزیه و تحلیل چند سطحی: مقدمه ای بر مدل سازی چند سطحی پایه و پیشرفته نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Title Page Copyright Page Contents Preface to the Second Edition Preface to the First Edition 1 Introduction 1.1 Multilevel analysis 1.1.1 Probability models 1.2 This book 1.2.1 Prerequisites 1.2.2 Notation 2 Multilevel Theories, Multistage Sampling, and Multilevel Models 2.1 Dependence as a nuisance 2.2 Dependence as an interesting phenomenon 2.3 Macro-level, micro-level, and cross-level relations 2.4 Glommary 3 Statistical Treatment of Clustered Data 3.1 Aggregation 3.2 Disaggregation 3.3 The intraclass correlation 3.3.1 Within-group and between-group variance 3.3.2 Testing for group differences 3.4 Design effects in two-stage samples 3.5 Reliability of aggregated variables 3.6 Within- and between-group relations 3.6.1 Regressions 3.6.2 Correlations 3.6.3 Estimation of within- and between-group correlations 3.7 Combination of within-group evidence 3.8 Glommary 4 The Random Intercept Model 4.1 Terminology and notation 4.2 A regression model: fixed effects only 4.3 Variable intercepts: fixed or random parameters? 4.3.1 When to use random coefficient models 4.4 Definition of the random intercept model 4.5 More explanatory variables 4.6 Within- and between-group regressions 4.7 Parameter estimation 4.8 ‘Estimating’ random group effects: posterior means 4.8.1 Posterior confidence intervals 4.9 Three-level random intercept models 4.10 Glommary 5 The Hierarchical Linear Model 5.1 Random slopes 5.1.1 Heteroscedasticity 5.1.2 Do not force τ01 to be 0! 5.1.3 Interpretation of random slope variances 5.2 Explanation of random intercepts and slopes 5.2.1 Cross-level interaction effects 5.2.2 A general formulation of fixed and random parts 5.3 Specification of random slope models 5.3.1 Centering variables with random slopes? 5.4 Estimation 5.5 Three or more levels 5.6 Glommary 6 Testing and Model Specification 6.1 Tests for fixed parameters 6.1.1 Multiparameter tests for fixed effects 6.2 Deviance tests 6.2.1 More powerful tests for variance parameters 6.3 Other tests for parameters in the random part 6.3.1 Confidence intervals for parameters in the random part 6.4 Model specification 6.4.1 Working upward from level one 6.4.2 Joint consideration of level-one and level-two variables 6.4.3 Concluding remarks on model specification 6.5 Glommary 7 How Much Does the Model Explain? 7.1 Explained variance 7.1.1 Negative values of R2? 7.1.2 Definitions of the proportion of explained variance in two-level models 7.1.3 Explained variance in three-level models 7.1.4 Explained variance in models with random slopes 7.2 Components of variance 7.2.1 Random intercept models 7.2.2 Random slope models 7.3 Glommary 8 Heteroscedasticity 8.1 Heteroscedasticity at level one 8.1.1 Linear variance functions 8.1.2 Quadratic variance functions 8.2 Heteroscedasticity at level two 8.3 Glommary 9 Missing Data 9.1 General issues for missing data 9.1.1 Implications for design 9.2 Missing values of the dependent variable 9.3 Full maximum likelihood 9.4 Imputation 9.4.1 The imputation method 9.4.2 Putting together the multiple results 9.5 Multiple imputations by chained equations 9.6 Choice of the imputation model 9.7 Glommary 10 Assumptions of the Hierarchical Linear Model 10.1 Assumptions of the hierarchical linear model 10.2 Following the logic of the hierarchical linear model 10.2.1 Include contextual effects 10.2.2 Check whether variables have random effects 10.2.3 Explained variance 10.3 Specification of the fixed part 10.4 Specification of the random part 10.4.1 Testing for heteroscedasticity 10.4.2 What to do in case of heteroscedasticity 10.5 Inspection of level-one residuals 10.6 Residuals at level two 10.7 Influence of level-two units 10.8 More general distributional assumptions 10.9 Glommary 11 Designing Multilevel Studies 11.1 Some introductory notes on power 11.2 Estimating a population mean 11.3 Measurement of subjects 11.4 Estimating association between variables 11.4.1 Cross-level interaction effects 11.5 Allocating treatment to groups or individuals 11.6 Exploring the variance structure 11.6.1 The intraclass correlation 11.6.2 Variance parameters 11.7 Glommary 12 Other Methods and Models 12.1 Bayesian inference 12.2 Sandwich estimators for standard errors 12.3 Latent class models 12.4 Glommary 13 Imperfect Hierarchies 13.1 A two-level model with a crossed random factor 13.2 Crossed random effects in three-level models 13.3 Multiple membership models 13.4 Multiple membership multiple classification models 13.5 Glommary 14 Survey Weights 14.1 Model-based and design-based inference 14.1.1 Descriptive and analytic use of surveys 14.2 Two kinds of weights 14.3 Choosing between model-based and design-based analysis 14.3.1 Inclusion probabilities and two-level weights 14.3.2 Exploring the informativeness of the sampling design 14.4 Example: Metacognitive strategies as measured in the PISA study 14.4.1 Sampling design 14.4.2 Model-based analysis of data divided into parts 14.4.3 Inclusion of weights in the model 14.5 How to assign weights in multilevel models 14.6 Appendix. Matrix expressions for the single-level estimators 14.7 Glommary 15 Longitudinal Data 15.1 Fixed occasions 15.1.1 The compound symmetry model 15.1.2 Random slopes 15.1.3 The fully multivariate model 15.1.4 Multivariate regression analysis 15.1.5 Explained variance 15.2 Variable occasion designs 15.2.1 Populations of curves 15.2.2 Random functions 15.2.3 Explaining the functions 15.2.4 Changing covariates 15.3 Autocorrelated residuals 15.4 Glommary 16 Multivariate Multilevel Models 16.1 Why analyze multiple dependent variables simultaneously? 16.2 The multivariate random intercept model 16.3 Multivariate random slope models 16.4 Glommary 17 Discrete Dependent Variables 17.1 Hierarchical generalized linear models 17.2 Introduction to multilevel logistic regression 17.2.1 Heterogeneous proportions 17.2.2 The logit function: Log-odds 17.2.3 The empty model 17.2.4 The random intercept model 17.2.5 Estimation 17.2.6 Aggregation 17.3 Further topics on multilevel logistic regression 17.3.1 Random slope model 17.3.2 Representation as a threshold model 17.3.3 Residual intraclass correlation coefficient 17.3.4 Explained variance 17.3.5 Consequences of adding effects to the model 17.4 Ordered categorical variables 17.5 Multilevel event history analysis 17.6 Multilevel Poisson regression 17.7 Glommary 18 Software 18.1 Special software for multilevel modeling 18.1.1 HLM 18.1.2 MLwiN 18.1.3 The MIXOR suite and SuperMix 18.2 Modules in general-purpose software packages 18.2.1 SAS procedures VARCOMP, MIXED, GLIMMIX, and NLMIXED 18.2.2 R 18.2.3 Stata 18.2.4 SPSS, commands VARCOMP and MIXED 18.3 Other multilevel software 18.3.1 PinT 18.3.2 Optimal Design 18.3.3 MLPowSim 18.3.4 Mplus 18.3.5 Latent Gold 18.3.6 REALCOM 18.3.7 WinBUGS References Index