دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.] نویسندگان: Mehdi Toloo (editor), Siamak Talatahari (editor), Iman Rahimi (editor) سری: ISBN (شابک) : 0128237996, 9780128237991 ناشر: Academic Press سال نشر: 2022 تعداد صفحات: 314 [316] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 23 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Multi-Objective Combinatorial Optimization Problems and Solution Methods به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مسائل بهینه سازی ترکیبی چند هدفه و روش های حل نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مسائل بهینهسازی ترکیبی چندهدفه و روشهای حل نتایج یک دستاورد بهینهسازی ترکیبی چندهدفه اخیر را مورد بحث قرار میدهد که رویکردهای فراابتکاری، برنامهریزی ریاضی، اکتشافی، فراابتکاری و ترکیبی را در نظر میگیرد. به عبارت دیگر، کتاب موضوعات مختلف بهینهسازی ترکیبی چندهدفه را ارائه میکند که ممکن است از روشهای مختلف در تئوری و عمل بهرهمند شوند. مسائل بهینهسازی ترکیبی در طیف وسیعی از کاربردها در تحقیقات عملیات، مهندسی، علوم زیستی و علوم کامپیوتر ظاهر میشوند، از این رو بسیاری از رویکردهای بهینهسازی ایجاد شدهاند که جهان گسسته را از طریق تکنیکهای هندسی، تحلیلی و جبری به جهان پیوسته مرتبط میکنند.
این کتاب این موضوع مهم را پوشش میدهد، زیرا بهینهسازی محاسباتی به عنوان بهینهسازی طراحی محبوبیت فزایندهای پیدا کرده است و کاربردهای آن در مهندسی و صنعت به دلیل الزامات طراحی دقیقتر در مدرن، اهمیت بیشتری پیدا کرده است. تمرین مهندسی
Multi-Objective Combinatorial Optimization Problems and Solution Methods discusses the results of a recent multi-objective combinatorial optimization achievement that considered metaheuristic, mathematical programming, heuristic, hyper heuristic and hybrid approaches. In other words, the book presents various multi-objective combinatorial optimization issues that may benefit from different methods in theory and practice. Combinatorial optimization problems appear in a wide range of applications in operations research, engineering, biological sciences and computer science, hence many optimization approaches have been developed that link the discrete universe to the continuous universe through geometric, analytic and algebraic techniques.
This book covers this important topic as computational optimization has become increasingly popular as design optimization and its applications in engineering and industry have become ever more important due to more stringent design requirements in modern engineering practice.
Front cover Half title Title Copyright Dedication Contents Contributors Editors Biography Preface Acknowledgments Chapter 1 Multiobjective combinatorial optimization problems: social, keywords, and journal maps 1.1 Introduction 1.2 Methodology 1.3 Data and basic statistics 1.4 Results and discussion 1.4.1 Mapping the cognitive space 1.4.2 Mapping the social space 1.5 Conclusions and direction for future research References Chapter 2 The fundamentals and potential of heuristics and metaheuristics for multiobjective combinatorial optimization problems and solution methods 2.1 Introduction 2.2 Multiobjective combinatorial optimization 2.3 Heuristics concepts 2.4 Metaheuristics concepts 2.5 Heuristics and metaheuristics examples 2.5.1 Tabu search 2.6 Evolutionary algorithms (EA) 2.7 Genetic algorithms (GA) 2.8 Simulated annealing 2.9 Particle swarm optimization (PSO) 2.10 Scatter search (SS) 2.11 Greedy randomized adaptive search procedures (GRASP) 2.12 Ant-colony optimization 2.13 Clustering search 2.14 Hybrid metaheuristics 2.15 Differential evolution (DE) 2.16 Teaching learning–based optimization (TLBO) 2.17 Discussion 2.18 Conclusions 2.19 Future trends References Chapter 3 A survey on links between multiple objective decision making and data envelopment analysis 3.1 Introduction 3.2 Preliminary discussion 3.2.1 Multiple objective decision making 3.2.2 Data envelopment analysis 3.3 Application of MODM concepts in the DEA methodology 3.3.1 Classical DEA models 3.3.2 Target setting 3.3.3 Value efficiency 3.3.4 Secondary goal models 3.3.5 Common set of weights 3.3.6 DEA-discriminant analysis 3.3.7 Efficient units and efficient hyperplanes 3.4 Classification of usage of DEA in MODM 3.4.1 Efficient points 3.5 Discussion and conclusion References Chapter 4 Improved crow search algorithm based on arithmetic crossover—a novel metaheuristic technique for solving engineering optimization problems 4.1 Introduction 4.2 Materials and methods 4.2.1 Crow search optimization 4.2.2 Arithmetic crossover based on genetic algorithm 4.2.3 Hybrid CO algorithm 4.3 Results and discussion 4.4 Conclusion Acknowledgments References Chapter 5 MOGROM: Multiobjective Golden Ratio Optimization Algorithm 5.1 Introduction 5.1.1 Definition of multiobjective problems (MOPs) 5.1.2 Literature review 5.1.3 Background and related work 5.2 GROM and MOGROM 5.2.1 MOGROM 5.3 Simulation results, investigation, and analysis 5.3.1 First class 5.3.2 Second class 5.3.3 Third class 5.3.4 Fourth class 5.3.5 Fifth class 5.4 Conclusion References Chapter 6 Multiobjective charged system search for optimum location of bank branch 6.1 Introduction 6.2 Multiobjective backgrounds 6.2.1 Dominance and Pareto Front 6.2.2 Performance metrics 6.2.2.2 Coverage of Two Sets (CS) 6.3 Utilized methods 6.3.1 NSGA-II algorithm 6.3.2 MOPSO algorithm 6.3.3 MOCSS algorithm 6.4 Analytic Hierarchy Process 6.5 Model formulation 6.6 Implementation and results 6.7 Conclusions References Chapter 7 Application of multiobjective Gray Wolf Optimization in gasification-based problems 7.1 Introduction 7.2 Systems description 7.2.1 Downdraft gasifier 7.2.2 Waste-to-energy plant 7.3 Modeling 7.4 Multicriteria Gray Wolf Optimization 7.5 Results and discussion 7.5.1 Optimization at the gasifier level 7.5.2 Optimization at the WtEP Level References Chapter 8 A VDS-NSGA-II algorithm for multiyear multiobjective dynamic generation and transmission expansion planning 8.1 Introduction 8.2 Problem formulation 8.2.1 Master problem 8.2.2 Slave problem 8.2.3 TC assessment objective of the MMDGTEP problem 8.2.4 EENSHL-II evaluation procedure of the MMDGTEP problem 8.3 Multiobjective optimization principle 8.4 Nondominated sorting genetic algorithm-II 8.4.1 Computational flow of NSGA-II 8.4.2 VDS-NSGA-II 8.4.3 Methodology 8.4.4 VIKOR decision making 8.5 Simulation results 8.6 Conclusion Acknowledgment References Chapter 9 A multiobjective Cuckoo Search Algorithm for community detection in social networks 9.1 Introduction 9.2 Related works 9.3 Proposed model 9.3.1 Community diagnosis 9.3.2 Multiobjective optimization 9.3.3 CD based on MOCSA 9.3.4 Fitness function 9.4 Evaluation and results 9.5 Conclusion and future works References Chapter 10 Finding efficient solutions of the multicriteria assignment problem 10.1 Introduction 10.2 The basic AP 10.3 Restated MCAP and DEA: models and relationship 10.3.1 The multicriteria assignment problem (MCAP) 10.3.2 Data envelopment analysis 10.3.3 An integrated DEA and MCAP 10.4 Finding efficient solutions using DEA 10.4.1 The two-phase algorithm 10.4.2 The proposed algorithm 10.5 Numerical examples 10.6 Conclusion Acknowledgments References Chapter 11 Application of multiobjective optimization in thermal design and analysis of complex energy systems 11.1 Introduction 11.1.1 System boundaries 11.1.2 Optimization criteria 11.1.3 Variables 11.1.4 The mathematical model 11.1.5 Suboptimization 11.2 Types of optimization problems 11.2.1 Single-objective optimization 11.2.2 Multiobjective optimization 11.3 Optimization of energy systems 11.3.1 Thermodynamic optimization and economic optimization 11.3.2 Thermoeconomic optimization 11.4 Literature survey on the optimization of complex energy systems 11.5 Thermodynamic modeling of energy systems 11.5.1 Mass balance 11.5.2 Energy balance 11.5.3 Entropy balance 11.5.4 Exergy balance 11.5.5 Energy efficiency 11.5.6 Exergy efficiency 11.6 Thermoeconomics methodology for optimization of energy systems 11.6.1 The SPECO method 11.6.2 The F (fuel) and P (product) rules 11.7 Sensitivity analysis of energy systems 11.8 Example of application (case study) 11.8.1 Integrated biomass trigeneration system 11.8.2 Results and discussion 11.8.3 Sensitivity analysis 11.9 Conclusions References Chapter 12 A multiobjective nonlinear combinatorial model for improved planning of tour visits using a novel binary gaining-sharing knowledge- based optimization algorithm 12.1 Introduction 12.2 Tourism in Egypt: an overview 12.2.1 Tourism in Egypt 12.2.2 Tourism in Cairo 12.2.3 Planning of tour visits 12.3 PTP versus both the TSP and KP 12.3.1 The Traveling Salesman Problem and its variations 12.3.2 Multiobjective 0–1 KP 12.3.3 Basic differences between PTP and both the TSP and KP 12.4 Mathematical model for planning of tour visits 12.5 A real application case study 12.5.1 Ramses Hilton Hotel 12.6 Proposed methodology 12.6.1 Gaining Sharing Knowledge-based optimization algorithm (GSK) 12.6.2 Binary Gaining Sharing Knowledge-based optimization algorithm (BGSK) 12.7 Experimental results 12.8 Conclusions and points for future studies References Chapter 13 Variables clustering method to enable planning of large supply chains 13.1 Introduction 13.2 SCP at a glance 13.3 SCP instances as MOCO models 13.4 Orders clustering for mix-planning 13.5 Variables clustering for the general SCP paradigm 13.6 Conclusions References Index Back cover Blank Page Blank Page Blank Page Blank Page