دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.]
نویسندگان: Jenny Benois-Pineau. Akka Zemmari
سری:
ISBN (شابک) : 3030744779, 9783030744779
ناشر: Springer
سال نشر: 2021
تعداد صفحات: 328
[321]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 7 Mb
در صورت تبدیل فایل کتاب Multi-faceted Deep Learning: Models and Data به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب یادگیری عمیق چند وجهی: مدل ها و داده ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مجموعه بزرگی از روشها را در زمینه هوش مصنوعی - یادگیری عمیق که برای مشکلات دنیای واقعی اعمال میشود، پوشش میدهد. مبانی رویکرد یادگیری عمیق و انواع مختلف شبکههای عصبی عمیق (DNN) ابتدا در این کتاب خلاصه میشود، که مقدمهای جامع برای فصلهای مشکلمحور بعدی ارائه میدهد.
در این کتاب جالبترین و بازترین مسائل یادگیری ماشینی در چارچوب یادگیری عمیق مورد بحث قرار گرفته و راهحلهایی ارائه شده است. این کتاب نحوه پیادهسازی یادگیری شات صفر را با طبقهبندیکنندههای شبکه عصبی عمیق، که به حجم زیادی از دادههای آموزشی نیاز دارد، نشان میدهد. فقدان داده های آموزشی مشروح به طور طبیعی محققان را به پیاده سازی الگوریتم های نظارت پایین سوق می دهد. یادگیری متریک یک تحقیق طولانی مدت است اما در چارچوب رویکردهای یادگیری عمیق، تازگی و اصالت پیدا می کند. طبقه بندی ریزدانه با تنوع کم بین طبقاتی یک مشکل دشوار برای هر کار طبقه بندی است. این کتاب نحوه حل آن را با استفاده از روشهای مختلف و مکانیسمهای توجه در شبکههای کانولوشن سه بعدی ارائه میکند.
محققان متمرکز بر یادگیری ماشین، یادگیری عمیق، چند رسانه ای و بینایی کامپیوتری می خواهند این کتاب را خریداری کنند. دانشآموزان سطح پیشرفته که در این زمینههای موضوعی علوم کامپیوتر را مطالعه میکنند نیز این کتاب را مفید خواهند یافت.
This book covers a large set of methods in the field of Artificial Intelligence - Deep Learning applied to real-world problems. The fundamentals of the Deep Learning approach and different types of Deep Neural Networks (DNNs) are first summarized in this book, which offers a comprehensive preamble for further problem–oriented chapters.
The most interesting and open problems of machine learning in the framework of Deep Learning are discussed in this book and solutions are proposed. This book illustrates how to implement the zero-shot learning with Deep Neural Network Classifiers, which require a large amount of training data. The lack of annotated training data naturally pushes the researchers to implement low supervision algorithms. Metric learning is a long-term research but in the framework of Deep Learning approaches, it gets freshness and originality. Fine-grained classification with a low inter-class variability is a difficult problem for any classification tasks. This book presents how it is solved, by using different modalities and attention mechanisms in 3D convolutional networks.
Researchers focused on Machine Learning, Deep learning, Multimedia and Computer Vision will want to buy this book. Advanced level students studying computer science within these topic areas will also find this book useful.
Preface Acknowledgments Contents 1 Introduction 2 Deep Neural Networks: Models and Methods 2.1 Artificial Neural Networks 2.1.1 Formal Neuron 2.1.1.1 Activation Functions 2.1.2 Artificial Neural Networks and Deep Neural Networks 2.2 Convolutional Neural Networks 2.2.1 General Principles 2.2.2 Layers of a CNN 2.2.2.1 Convolutional Layers 2.2.2.2 Max-Pooling layers 2.2.2.3 Dropout 2.2.3 Some Well-Known CNNs Architectures 2.2.3.1 LeNet Architecture and MNIST Dataset 2.2.3.2 AlexNet Architecture 2.2.3.3 GoogLeNet 2.2.3.4 Other Important Architectures 2.3 Optimization Methods 2.3.1 Gradient Descent 2.3.2 Stochastic Gradient Descent 2.3.3 Momentum Based SGD 2.3.4 Nesterov Accelerated Gradient Descent 2.3.5 Adaptative Learning Rate 2.3.6 Extensions of Gradient Descent 2.4 Gradient Estimation in Neural Networks 2.5 Recurrent Neural Networks 2.5.1 General Principles 2.5.2 Long-Short Term Memory Networks 2.6 Generative Adversary Networks 2.7 Autoencoders 2.8 Siamese Neural Networks 2.9 Conclusion References 3 Deep Learning for Semantic Segmentation 3.1 Introduction 3.2 Semantic Segmentation Challenges 3.3 Traditional Approaches for Semantic Segmentation 3.4 Semantic Segmentation Deep Learning Approaches 3.4.1 Supervised Learning Approaches 3.4.1.1 Transfer Learning Based Networks 3.4.1.2 Learning Without Prior Knowledge 3.4.1.3 Performance Metrics and Loss Functions 3.4.2 Unsupervised and Weakly Supervised Learning 3.5 Model Refinements 3.5.1 Block Level Enhancement 3.5.2 Attention Processes 3.5.3 Multi Task Learning 3.5.3.1 Semantic Segmentation as an Auxiliary Task 3.5.3.2 Auxiliary Tasks for Improved Semantic Segmentation 3.6 Data, Benchmarks and Model Evolution 3.6.1 Importance of the Data and Public Collections 3.6.2 A Way to Follow the State of the Art 3.6.3 Typical Benchmarks 3.7 Conclusion References 4 Beyond Full Supervision in Deep Learning 4.1 Context 4.1.1 Weakly Supervised Learning (WSL) 4.1.2 Semi Supervised Learning (SSL) 4.1.3 Self-training 4.2 Negative Evidence Models for WSL 4.2.1 Notations 4.2.2 Negative Evidence Model 4.2.3 Learning Formulation 4.2.4 Negative Evidence Intuition 4.2.5 ResNet-WELDON Network Architecture 4.2.5.1 Feature Extraction Network 4.2.5.2 Prediction Network Design 4.2.6 Learning and Instantiations 4.2.7 Experiments 4.3 Beyond Reconstruction in Semi-supervised Learning 4.3.1 Designing the HybridNet Architecture 4.3.2 Training HybridNet 4.3.2.1 Classification 4.3.2.2 Reconstruction Losses 4.3.2.3 Branch Cooperation 4.3.2.4 Encouraging Invariance in the Discriminative Branch 4.3.3 Experiments 4.4 Medical Image Segmentation with Partial Labels 4.4.1 Training from Partial Annotations with SMILE 4.4.2 Self-supervision and Pseudo-Labeling 4.4.3 Experiments 4.5 Conclusion References 5 Similarity Metric Learning 5.1 Introduction 5.2 Metric Learning with Neural Networks 5.2.1 Architectures 5.2.2 Training Set Selection 5.2.2.1 Pairs 5.2.2.2 Triplets 5.2.2.3 Tuples 5.2.3 Loss Functions 5.2.3.1 Cosine Pair-Wise 5.2.3.2 Triangular 5.2.3.3 Norm-Based 5.2.3.4 Triplet 5.2.3.5 Angular 5.2.3.6 Deviance 5.2.3.7 Quadruplets 5.2.3.8 Tuples: Pair-Wise 5.2.3.9 Tuples: Polar Sine 5.2.3.10 SoftTriple 5.2.3.11 Sphere Loss 5.2.3.12 Probability-Driven 5.2.3.13 Statistical 5.2.4 Training Algorithms and Schemes 5.3 Conclusion References 6 Zero-Shot Learning with Deep Neural Networks for Object Recognition 6.1 Introduction 6.2 Formalism, Settings and Evaluation 6.2.1 Standard ZSL Setting 6.2.2 Alternative ZSL Settings 6.2.3 ZSL Evaluation 6.2.4 Standard ZSL Datasets and Evaluation Biases 6.3 Methods 6.3.1 Ridge Regression Approaches 6.3.2 Triplet-Loss Approaches 6.3.3 Generative Approaches 6.4 Semantic Features for Large Scale ZSL 6.5 Conclusion and Current Challenges References 7 Image and Video Captioning Using Deep Architectures 7.1 Introduction 7.2 Basics of Visual Captioning 7.2.1 From Neural Machine Translation to Visual Captioning 7.2.2 Neural Language Models for Image and Video Captioning 7.2.3 Building a Deep Caption Generation Model: A Generic Method 7.2.3.1 Encoding Images and Videos 7.2.3.2 Decoding Images and Videos 7.2.4 Improving Captioning Models with Attention 7.3 Optimization of Visual Captioning Models 7.3.1 Pretraining Visual Features 7.3.2 Optimizing the Language Model with a Cross-Entropy Loss 7.3.3 Optimizing the Language Model by Reinforcement Learning 7.3.4 Regularizing Captioning Models 7.3.4.1 Matching Regularization 7.3.4.2 Attribute Prediction 7.3.5 Improving Captions at Inference Time 7.3.5.1 Greedy Search vs Beam Search 7.3.5.2 Captions Reranking 7.4 Evaluation of Captions Quality 7.4.1 BLEU-n 7.4.2 ROUGEL 7.4.3 METEOR 7.4.4 CIDErD 7.5 Captioning Datasets 7.5.1 Image Captioning Datasets 7.5.2 Video Captioning Datasets 7.6 Results Reported in Published Works 7.6.1 Image Captioning 7.6.2 Video Captioning 7.7 Other Related Works 7.7.1 Image Dense Captioning 7.7.2 Video Dense Captioning 7.7.3 Movie Captioning 7.8 Conclusion References 8 Deep Learning in Video Compression Algorithms 8.1 Introduction 8.2 Video Compression Standards 8.3 Using Neural Networks for Video Compression 8.4 Improving Intra and Inter Predictions Using Neural Networks 8.5 Holistic Approaches 8.6 Summary References 9 3D Convolutional Networks for Action Recognition: Application to Sport Gesture Recognition 9.1 Introduction 9.2 Highlights on Action Recognition Problem 9.2.1 Action Classification from Videos with Handcrafted Features 9.2.2 The Move to DNNs in Action Recognition Problem 9.2.3 2D Convolutional Neural Networks for Action Classification 9.2.4 From 2D to 3D ConvNets in Action Classification 9.2.5 3D Convolutional Neural Networks for Action Classification 9.2.6 Video Understanding for Racket Sports 9.3 Datasets for Action Recognition 9.3.1 Annotation Processes 9.3.1.1 Automatic Annotation 9.3.1.2 Manual Annotation 9.3.2 Datasets for Action Classification 9.3.2.1 The Acquisition-Controlled Datasets 9.3.2.2 Datasets from Movies 9.3.2.3 In-the-Wild Datasets 9.3.3 The TTStroke-21 Dataset 9.3.3.1 TTStroke-21 Acquisition 9.3.3.2 TTStroke-21 Annotation 9.3.3.3 Negative Samples Extraction 9.3.3.4 Data for Evaluation 9.4 TSTCNN: A Twin Spatio-Temporal 3D Convolutional Neural Network for Action Recognition 9.4.1 Results 9.5 Conclusion and Perspectives References 10 Deep Learning for Audio and Music 10.1 Introduction 10.2 DNN Architectures for Audio Processing 10.2.1 DNN Architectures 10.2.2 DNN Meta-architectures 10.2.3 DNN Training Paradigms and Losses 10.3 DNN Inputs for Audio Processing 10.3.1 Using Time and Frequency Representations as Input 10.3.1.1 Spectrogram Images Versus Natural Images 10.3.1.2 DNN Models for Time and Frequency Representations as Inputs 10.3.2 Using Waveform Representations as Input 10.3.3 Using Knowledge-Driven Representations as Input 10.4 Applications 10.4.1 Music Content Description 10.4.2 Environmental Sounds Description 10.4.3 Content Processing: Source Separation 10.4.4 Content Generation 10.4.5 Semi-Supervised Learning and Self-Supervised Learning 10.4.5.1 Semi-Supervised Learning 10.4.6 Self-Supervised Learning 10.5 Conclusion and Future Directions References 11 Explainable AI for Medical Imaging: Knowledge Matters 11.1 Introduction 11.1.1 A Matter of Trust 11.1.2 The Emergence of XAI 11.1.3 The Case of Medical Imaging 11.2 The Augmented Pathologist 11.2.1 Explainable Human Intelligence? 11.2.2 Data and Model Visualization 11.2.3 Safety and Robustness Improvement 11.3 Investigating Alzheimer\'s Disease with CAM 11.4 Breast Cancer Identification Using Deep Learning Approaches 11.4.1 Breast Cancer Description 11.4.2 Deep Learning and Breast Cancer Databases 11.4.2.1 Deep Learning Architecture 11.4.2.2 Breast Cancer Database 11.4.3 Identification Results 11.5 Conclusion References 12 Improving Video Quality with Generative Adversarial Networks 12.1 Introduction 12.2 Related Works 12.2.1 Video and Image Restoration 12.2.2 Video and Image Compression 12.2.3 Hybrid Approaches 12.2.4 Quality Metrics 12.3 Generative Adversarial Networks vs Standard Enhancement CNNs 12.3.1 Network Architectures 12.3.1.1 Fully convolutional Generator 12.3.1.2 Improving the Efficiency of Enhancement Architectures 12.3.1.3 Discriminative Network 12.3.2 Loss Functions 12.3.2.1 Pixel-Wise MSE Loss 12.3.2.2 SSIM Loss 12.3.2.3 Perceptual Loss 12.3.2.4 Adversarial Patch Loss 12.3.2.5 Relativistic GAN 12.3.3 Quality Agnostic Artifact Removal 12.3.4 NoGAN Training 12.4 Exploiting Transmitter and Receiver for Improvement 12.4.1 Semantic Video Encoding 12.4.2 Video Restoration 12.5 Conclusion References 13 Conclusion