ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب MOS devices for low-voltage and low-energy applications

دانلود کتاب دستگاه های MOS برای کاربردهای کم ولتاژ و کم انرژی

MOS devices for low-voltage and low-energy applications

مشخصات کتاب

MOS devices for low-voltage and low-energy applications

ویرایش:  
نویسندگان: , ,   
سری:  
ISBN (شابک) : 9781119107354, 1119107369 
ناشر: John Wiley et Sons 
سال نشر: 2017 
تعداد صفحات: 471 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 9 مگابایت 

قیمت کتاب (تومان) : 47,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 2


در صورت تبدیل فایل کتاب MOS devices for low-voltage and low-energy applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب دستگاه های MOS برای کاربردهای کم ولتاژ و کم انرژی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Content: Preface xv    Acknowledgments xvi    Part I INTRODUCTION TO LOW   VOLTAGE AND LOW   ENERGY DEVICES 1    1 Why Are Low   Voltage and Low   Energy Devices Desired? 3    References 4    2 History of Low   Voltage and Low   Power Devices 5    2.1 Scaling Scheme and Low   Voltage Requests 5    2.2 Silicon   on   Insulator Devices and Real History 8    References 10    3 Performance Prospects of Subthreshold Logic Circuits 12    3.1 Introduction 12    3.2 Subthreshold Logic and its Issues 12    3.3 Is Subthreshold Logic the Best Solution? 13    References 13    Part II SUMMARY OF PHYSICS OF MODERN SEMICONDUCTOR DEVICES 15    4 Overview 17    References 18    5 Bulk MOSFET 19    5.1 Theoretical Basis of Bulk MOSFET Operation 19    5.2 Subthreshold Characteristics:    OFF State    19    5.2.1 Fundamental Theory 19    5.2.2 Influence of BTBT Current 23    5.2.3 Points to Be Remarked 24    5.3 Post   Threshold Characteristics:    ON State    24    5.3.1 Fundamental Theory 24    5.3.2 Self   Heating Effects 26    5.3.3 Parasitic Bipolar Effects 27    5.4 Comprehensive Summary of Short   Channel Effects 27    References 28    6 SOI MOSFET 29    6.1 Partially Depleted Silicon   on   Insulator Metal Oxide Semiconductor Field   Effect Transistors 29    6.2 Fully Depleted (FD) SOI MOSFET 30    6.2.1 Subthreshold Characteristics 30    6.2.2 Post   Threshold Characteristics 36    6.2.3 Comprehensive Summary of Short   Channel Effects 41    6.3 Accumulation   Mode (AM) SOI MOSFET 41    6.3.1 Aspects of Device Structure 41    6.3.2 Subthreshold Characteristics 42    6.3.3 Drain Current Component (I)     Body Current (ID,body) 43    6.3.4 Drain Current Component (II)     Surface Accumulation    Layer Current (ID,acc) 45    6.3.5 Optional Discussions on the Accumulation Mode SOI MOSFET 45    6.4 FinFET and Triple   Gate FET 46    6.4.1 Introduction 46    6.4.2 Device Structures and Simulations 46    6.4.3 Results and Discussion 47    6.4.4 Summary 49    6.5 Gate   all   Around MOSFET 50    References 51    7 Tunnel Field   Effect Transistors (TFETs) 53    7.1 Overview 53    7.2 Model of Double   Gate Lateral Tunnel FET and Device Performance Perspective 53    7.2.1 Introduction 53    7.2.2 Device Modeling 54    7.2.3 Numerical Calculation Results and Discussion 61    7.2.4 Summary 65    7.3 Model of Vertical Tunnel FET and Aspects of its Characteristics 65    7.3.1 Introduction 65    7.3.2 Device Structure and Model Concept 65    7.3.3 Comparing Model Results with TCAD Results 69    7.3.4 Consideration of the Impact of Tunnel Dimensionality on Drivability 72    7.3.5 Summary 75    7.4 Appendix Integration of Eqs. (7.14)   (7.16) 76    References 78    Part III POTENTIAL OF CONVENTIONAL BULK MOSFETs 81    8 Performance Evaluation of Analog Circuits with Deep Submicrometer MOSFETs in the Subthreshold Regime of Operation 83    8.1 Introduction 83    8.2 Subthreshold Operation and Device Simulation 84    8.3 Model Description 85    8.4 Results 86    8.5 Summary 90    References 90    9 Impact of Halo Doping on the Subthreshold Performance of Deep   Submicrometer CMOS Devices and Circuits for Ultralow Power Analog/Mixed   Signal Applications 91    9.1 Introduction 91    9.2 Device Structures and Simulation 92    9.3 Subthreshold Operation 93    9.4 Device Optimization for Subthreshold Analog Operation 95    9.5 Subthreshold Analog Circuit Performance 98    9.6 CMOS Amplifiers with Large Geometry Devices 105    9.7 Summary 106    References 107    10 Study of the Subthreshold Performance and the Effect of Channel Engineering on Deep Submicron Single   Stage CMOS Amplifiers 108    10.1 Introduction 108    10.2 Circuit Description 108    10.3 Device Structure and Simulation 110    10.4 Results and Discussion 110    10.5 PTAT as a Temperature Sensor 116    10.6 Summary 116    References 116    11 Subthreshold Performance of Dual   Material Gate CMOS Devices and Circuits for Ultralow Power Analog/Mixed   Signal Applications 117    11.1 Introduction 117    11.2 Device Structure and Simulation 118    11.3 Results and Discussion 120    11.4 Summary 126    References 127    12 Performance Prospect of Low   Power Bulk MOSFETs 128    Reference 129    Part IV POTENTIAL OF FULLY   DEPLETED SOI MOSFETs 131    13 Demand for High   Performance SOI Devices 133    14 Demonstration of 100 nm Gate SOI CMOS with a Thin Buried Oxide Layer and its Impact on Device Technology 134    14.1 Introduction 134    14.2 Device Design Concept for 100 nm Gate SOI CMOS 134    14.3 Device Fabrication 136    14.4 Performance of 100   nm    and 85   nm Gate Devices 137    14.4.1 Threshold and Subthreshold Characteristics 137    14.4.2 Drain Current (ID)   Drain Voltage (VD) and ID   Gate Voltage (VG) Characteristics of 100   nm   Gate MOSFET/SIMOX 138    14.4.3 ID   VD and ID   VG Characteristics of 85   nm   Gate MOSFET/SIMOX 142    14.4.4 Switching Performance 142    14.5 Discussion 142    14.5.1 Threshold Voltage Balance in Ultrathin CMOS/SOI Devices 142    14.6 Summary 144    References 145    15 Discussion on Design Feasibility and Prospect of High   Performance Sub   50 nm Channel Single   Gate SOI MOSFET Based on the ITRS Roadmap 147    15.1 Introduction 147    15.2 Device Structure and Simulations 148    15.3 Proposed Model for Minimum Channel Length 149    15.3.1 Minimum Channel Length Model Constructed using Extract A 149    15.3.2 Minimum Channel Length Model Constructed using Extract B 150    15.4 Performance Prospects of Scaled SOI MOSFETs 152    15.4.1 Dynamic Operation Characteristics of Scaled SG SOI MOSFETs 152    15.4.2 Tradeoff and Optimization of Standby Power Consumption and Dynamic Operation 157    15.5 Summary 162    References 162    16 Performance Prospects of Fully Depleted SOI MOSFET   Based Diodes Applied to Schenkel Circuits for RF   ID Chips 164    16.1 Introduction 164    16.2 Remaining Issues with Conventional Schenkel Circuits and an Advanced Proposal 165    16.3 Simulation   Based Consideration of RF Performance of SOI   QD 172    16.4 Summary 176    16.5 Appendix: A Simulation Model for Minority Carrier Lifetime 177    16.6 Appendix: Design Guideline for SOI   QDs 177    References 178    17 The Potential and the Drawbacks of Underlap Single   Gate Ultrathin SOI MOSFET 180    17.1 Introduction 180    17.2 Simulations 181    17.3 Results and Discussion 183    17.3.1 DC Characteristics and Switching Performance: Device A 183    17.3.2 RF Analog Characteristics: Device A 184    17.3.3 Impact of High      Gate Dielectric on Performance of USU SOI MOSFET Devices: Devices B and C 185    17.3.4 Impact of Simulation Model on Simulation Results 189    17.4 Summary 192    References 192    18 Practical Source/Drain Diffusion and Body Doping Layouts for High   Performance and Low   Energy Triple   Gate SOI MOSFETs 194    18.1 Introduction 194    18.2 Device Structures and Simulation Model 195    18.3 Results and Discussion 196    18.3.1 Impact of S/D   Underlying Layer on ION, IOFF, and Subthreshold Swing 196    18.3.2 Tradeoff of Short   Channel Effects and Drivability 196    18.4 Summary 201    References 201    19 Gate Field Engineering and Source/Drain Diffusion Engineering for High   Performance Si Wire Gate   All   Around MOSFET and Low   Power Strategy in a Sub   30 nm   Channel Regime 203    19.1 Introduction 203    19.2 Device Structures Assumed and Physical Parameters 204    19.3 Simulation Results and Discussion 206    19.3.1 Performance of Sub   30 nm   Channel Devices and Aspects of Device Characteristics 206    19.3.2 Impact of Cross   Section of Si Wire on Short   Channel Effects and Drivability 212    19.3.3 Minimizing Standby Power Consumption of GAA SOI MOSFET 216    19.3.4 Prospective Switching Speed Performance of GAA SOI MOSFET 217    19.3.5 Parasitic Resistance Issues of GAA Wire MOSFETs 218    19.3.6 Proposal for Possible GAA Wire MOSFET Structure 220    19.4 Summary 221    19.5 Appendix: Brief Description of Physical Models in Simulations 221    References 225    20 Impact of Local High      Insulator on Drivability and Standby Power of Gate   All   Around SOI MOSFET 228    20.1 Introduction 228    20.2 Device Structure and Simulations 229    20.3 Results and Discussion 230    20.3.1 Device Characteristics of GAA Devices with Graded   Profile Junctions 230    20.3.2 Device Characteristics of GAA Devices with Abrupt Junctions 235    20.3.3 Behaviors of Drivability and Off   Current 237    20.3.4 Dynamic Performance of Devices with Graded   Profile Junctions 239    20.4 Summary 239    References 240    Part V POTENTIAL OF PARTIALLY DEPLETED SOI MOSFETs 241    21 Proposal for Cross   Current Tetrode (XCT) SOI MOSFETs: A 60 dB Single   Stage CMOS Amplifier Using High   Gain Cross   Current Tetrode MOSFET/SIMOX 243    21.1 Introduction 243    21.2 Device Fabrication 244    21.3 Device Characteristics 245    21.4 Performance of CMOS Amplifier 247    21.5 Summary 249    References 249    22 Device Model of the XCT   SOI MOSFET and Scaling Scheme 250    22.1 Introduction 250    22.2 Device Structure and Assumptions for Modeling 251    22.2.1 Device Structure and Features of XCT Device 251    22.2.2 Basic Assumptions for Device Modeling 253    22.2.3 Derivation of Model Equations 254    22.3 Results and Discussion 258    22.3.1 Measured Characteristics of XCT Devices 258    22.4 Design Guidelines 261    22.4.1 Drivability Control 261    22.4.2 Scaling Issues 262    22.4.3 Potentiality of Low   Energy Operation of XCT CMOS Devices 265    22.5 Summary 267    22.6 Appendix: Calculation of MOSFET Channel Current 267    22.7 Appendix: Basic Condition for Drivability Control 271    References 271    23 Low   Power Multivoltage Reference Circuit Using XCT   SOI MOSFET 274    23.1 Introduction 274    23.2 Device Structure and Assumptions for Simulations 274    23.2.1 Device Structure and Features 274    23.2.2 Assumptions for Simulations 277    23.3 Proposal for Voltage Reference Circuits and Simulation Results 278    23.3.1 Two   Reference Voltage Circuit 278    23.3.2 Three   Reference Voltage Circuit 283    23.4 Summary 283    References 284    24 Low   Energy Operation Mechanisms for XCT   SOI CMOS Devices: Prospects for a Sub   20 nm Regime 285    24.1 Introduction 285    24.2 Device Structure and Assumptions for Modeling 286    24.3 Circuit Simulation Results of SOI CMOS and XCT   SOI CMOS 288    24.4 Further Scaling Potential of XCT   SOI MOSFET 291    24.5 Performance Expected from the Scaled XCT   SOI MOSFET 292    24.6 Summary 296    References 296    Part VI QUANTUM EFFECTS AND APPLICATIONS     1 297    25 Overview 299    References 299    26 Si Resonant Tunneling MOS Transistor 301    26.1 Introduction 301    26.2 Configuration of SRTMOST 302    26.2.1 Structure and Electrostatic Potential 302    26.2.2 Operation Principle and Subthreshold Characteristics 304    26.3 Device Performance of SRTMOST 307    26.3.1 Transistor Characteristics of SRTMOST 307    26.3.2 Logic Circuit Using SRTMOST 310    26.4 Summary 312    References 312    27 Tunneling Dielectric Thin   Film Transistor 314    27.1 Introduction 314    27.2 Fundamental Device Structure 315    27.3 Experiment 315    27.3.1 Experimental Method 315    27.3.2 Calculation Method 317    27.4 Results and Discussion 320    27.4.1 Evaluation of SiNx Film 320    27.4.2 Characteristics of the TDTFT 320    27.4.3 TFT Performance at Low Temperatures 324    27.4.4 TFT Performance at High Temperatures 324    27.4.5 Suppression of the Hump Effect by the TDTFT 330    27.5 Summary 336    References 336    28 Proposal for a Tunnel   Barrier Junction (TBJ) MOSFET 339    28.1 Introduction 339    28.2 Device Structure and Model 339    28.3 Calculation Results 340    28.4 Summary 343    References 343    29 Performance Prediction of SOI Tunneling   Barrier   Junction MOSFET 344    29.1 Introduction 344    29.2 Simulation Model 345    29.3 Simulation Results and Discussion 349    29.3.1 Fundamental Properties of TBJ MOSFET 349    29.3.2 Optimization of Device Parameters and Materials 349    29.4 Summary 357    References 357    30 Physics   Based Model for TBJ   MOSFETs and High   Frequency Performance Prospects 358    30.1 Introduction 358    30.2 Device Structure and Device Model for Simulations 359    30.3 Simulation Results and Discussion 360    30.3.1 Current Drivability 361    30.3.2 Threshold Voltage Issue 362    30.3.3 Subthreshold Characteristics 363    30.3.4 Radio   Frequency Characteristics 363    30.4 Summary 365    References 365    31 Low   Power High   Temperature   Operation   Tolerant (HTOT) SOI MOSFET 367    31.1 Introduction 367    31.2 Device Structure and Simulations 368    31.3 Results and Discussion 371    31.3.1 Room   Temperature Characteristics 371    31.3.2 High   Temperature Characteristics 373    31.4 Summary 377    References 379    Part VII QUANTUM EFFECTS AND APPLICATIONS     2 381    32 Overview of Tunnel Field   Effect Transistor 383    References 385    33 Impact of a Spacer Dielectric and a Gate Overlap/Underlap on the Device Performance of a Tunnel Field   Effect Transistor 386    33.1 Introduction 386    33.2 Device Structure and Simulation 387    33.3 Results and Discussion 387    33.3.1 Effects of Variation in the Spacer Dielectric Constant 387    33.3.2 Effects of Variation in the Spacer Width 391    33.3.3 Effects of Variation in the Source Doping Concentration 392    33.3.4 Effects of a Gate   Source Overlap 394    33.3.5 Effects of a Gate   Channel Underlap 394    33.4 Summary 397    References 397    34 The Impact of a Fringing Field on the Device Performance of a P   Channel Tunnel Field   Effect Transistor with a High      Gate Dielectric 399    34.1 Introduction 399    34.2 Device Structure and Simulation 399    34.3 Results and Discussion 400    34.3.1 Effects of Variation in the Gate Dielectric Constant 400    34.3.2 Effects of Variation in the Spacer Dielectric Constant 408    34.4 Summary 410    References 410    35 Impact of a Spacer   Drain Overlap on the Characteristics of a Silicon Tunnel Field   Effect Transistor Based on Vertical Tunneling 412    35.1 Introduction 412    35.2 Device Structure and Process Steps 413    35.3 Simulation Setup 414    35.4 Results and Discussion 416    35.4.1 Impact of Variation in the Spacer   Drain Overlap 416    35.4.2 Influence of Drain on the Device Characteristics 424    35.4.3 Impact of Scaling 426    35.5 Summary 429    References 430    36 Gate   on   Germanium Source Tunnel Field   Effect Transistor Enabling Sub   0.5   V Operation 431    36.1 Introduction 431    36.2 Proposed Device Structure 431    36.3 Simulation Setup 432    36.4 Results and Discussion 434    36.4.1 Device Characteristics 434    36.4.2 Effects of Different Structural Parameters 435    36.4.3 Optimization of Different Structural Parameters 436    36.5 Summary 445    References 445    Part VIII PROSPECTS OF LOW   ENERGY DEVICE TECHNOLOLGY AND APPLICATIONS 447    37 Performance Comparison of Modern Devices 449    References 450    38 Emerging Device Technology and the Future of MOSFET 452    38.1 Studies to Realize High   Performance MOSFETs based on Unconventional Materials 452    38.2 Challenging Studies to Realize High   Performance MOSFETs based on the Nonconventional Doctrine 453    References 454    39 How Devices Are and Should Be Applied to Circuits 456    39.1 Past Approach 456    39.2 Latest Studies 456    References 457    40 Prospects for Low   Energy Device Technology and Applications 458    References 459    Bibliography 460    Index 463




نظرات کاربران