دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Moore J.H Spencer N.D
سری:
ISBN (شابک) : 0750303131
ناشر:
سال نشر: 2001
تعداد صفحات: 5157
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 67 مگابایت
در صورت تبدیل فایل کتاب Moore J.H., Spencer N.D Encyclopedia of Chemical Physics and Physical Chemistry. Volumes 1-3 Institute of Physics Pub. 2001 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مور J.H. ، دانشنامه Spencer N.D فیزیک شیمی و شیمی فیزیکی. جلد 1-3 موسسه میخانه فیزیک. 2001 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
دایرهالمعارف شیمی فیزیک و فیزیک شیمی حوزههای احتمالاً ناآشنا را معرفی میکند، تکنیکهای مهم تجربی و محاسباتی را توضیح میدهد و تلاشهای مدرن را توصیف میکند. دایره المعارف به سرعت اصول اولیه را ارائه می دهد، محدوده هر زیر رشته را تعریف می کند و نشان می دهد که برای توضیح کاملتر و دقیق تر به کجا مراجعه کنید. توجه ویژه ای به نمادها و اختصارات شده است تا این دایره المعارف کاربر پسند باشد. دقت شده است که سطح خواندن برای شیمیدان یا فیزیکدان آموزش دیده مناسب باشد. این دایره المعارف به سه بخش عمده تقسیم می شود: مبانی: مکانیک اتم ها و مولکول ها و برهم کنش های آنها، توصیف ماکروسکوپی و آماری سیستم های در حالت تعادل، و روش های اساسی درمان سیستم های واکنش دهنده. مشارکتهای این بخش نسبت به دو بخش بعدی، مخاطبان کمی پیچیدهتر را فرض میکنند. حداقل بخشی از هر مقاله به ناچار مطالبی را پوشش می دهد که ممکن است در متن شیمی فیزیک مدرن و کارشناسی نیز یافت شود. روشها: ابزار دقیق و نظریه بنیادی مورد استفاده در تکنیکهای اصلی طیفسنجی، ابزار تجربی برای توصیف مواد، ابزار دقیق و تئوری پایه بهکار رفته در مطالعه سینتیک شیمیایی، و تکنیکهای محاسباتی مورد استفاده برای پیشبینی خواص استاتیکی و دینامیکی مواد. کاربردها: موضوعات خاص مورد علاقه فعلی و تحقیقات فشرده. برای فیزیکدان یا شیمیدان تمرین کننده، این دایره المعارف مکانی برای شروع در هنگام مواجهه با یک مشکل جدید یا زمانی است که ممکن است از تکنیک های یک منطقه ناآشنا استفاده شود. برای یک دانشجوی فارغ التحصیل در شیمی یا فیزیک، دایره المعارف خلاصه ای از اصول اولیه و یک نمای کلی از طیف وسیعی از فعالیت هایی که در آن اصول فیزیکی برای مسائل شیمیایی اعمال می شود، ارائه می دهد. هر یک از این گروهها را با بیشترین سرعت ممکن به نقاط برجسته یک حوزه جدید هدایت میکند و راهنمایی میکند که کجا درباره موضوع با جزئیات بیشتر بخوانید.
The Encyclopedia of Physical Chemistry and Chemical Physics introduces possibly unfamiliar areas, explains important experimental and computational techniques, and describes modern endeavors. The encyclopedia quickly provides the basics, defines the scope of each subdiscipline, and indicates where to go for a more complete and detailed explanation. Particular attention has been paid to symbols and abbreviations to make this a user-friendly encyclopedia. Care has been taken to ensure that the reading level is suitable for the trained chemist or physicist. The encyclopedia is divided in three major sections: FUNDAMENTALS: the mechanics of atoms and molecules and their interactions, the macroscopic and statistical description of systems at equilibrium, and the basic ways of treating reacting systems. The contributions in this section assume a somewhat less sophisticated audience than the two subsequent sections. At least a portion of each article inevitably covers material that might also be found in a modern, undergraduate physical chemistry text. METHODS: the instrumentation and fundamental theory employed in the major spectroscopic techniques, the experimental means for characterizing materials, the instrumentation and basic theory employed in the study of chemical kinetics, and the computational techniques used to predict the static and dynamic properties of materials. APPLICATIONS: specific topics of current interest and intensive research. For the practicing physicist or chemist, this encyclopedia is the place to start when confronted with a new problem or when the techniques of an unfamiliar area might be exploited. For a graduate student in chemistry or physics, the encyclopedia gives a synopsis of the basics and an overview of the range of activities in which physical principles are applied to chemical problems. It will lead any of these groups to the salient points of a new field as rapidly as possible and gives pointers as to where to read about the topic in more detail.
Preface Volume I. Fundamentals Part A1. Microscopics A 1.1 The quantum mechanics of atoms and molecules A1.1.1 Introduction A1.1.2 Concepts of quantum mechanics A1.1.3 Quantum mechanics of many-particle systems A1.1.4 Approximating eigenvalues of the Hamiltonian Further Reading A 1.2 Internal molecular motions A 1.2.1 Introduction A 1.2.2 Quantum theory of atomic and molecular structure and motion A 1.2.3 The molecular potential energy surface A 1.2.4 Anharmonicity A 1.2.5 Polyatomic molecules A 1.2.6 Anharmonic normal modes A 1.2.7 Spectra that are not so regular A 1.2.8 Resonance couplings A 1.2.9 Polyad number A 1.2.10 Spectral pattern of the Darling–Dennison Hamiltonian A 1.2.11 Fermi resonances A 1.2.12 More subtle energy level patterns A 1.2.13 Multiple resonances in polyatomics A 1.2.14 Potential and experiment: closing the circle A 1.2.15 Polyad quantum numbers in larger systems A 1.2.16 Isomerization spectra A 1.2.17 Breakdown of the polyad numbers A 1.2.18 Classical versus non-classical effects A 1.2.19 Molecules in condensed phase A 1.2.20 Laser control of molecules A 1.2.21 Larger molecules A 1.2.22 Protein folding A 1.2.23 Outlook References Further Reading A 1.3 Quantum mechanics of condensed phases A1.3.1 Introduction A1.3.2 Many-body wavefunctions in condensed phases A1.3.3 Density functional approaches to quantum descriptions of condensed phases A1.3.4 Electronic states in periodic potentials: Bloch’s theorem A1.3.5 Energy bands for crystalline solids A1.3.6 Examples for the electronic structure and energy bands of crystals A1.3.7 Non-crystalline matter References Further Reading A 1.4 The symmetry of molecules A1.4.1 Introduction A1.4.2 Group theory A1.4.3 Symmetry operations and symmetry groups A1.4.4 The molecular symmetry group A1.4.5 The molecular point group Acknowledgments References Further Reading A 1.5 Intermolecular interactions A1.5.1 Introduction A1.5.2 Long-range forces A1.5.3 Short- and intermediate-range forces A1.5.4 Experimental information A1.5.5 Model interaction potentials References Further Reading A 1.6 Interaction of light with matter: a coherent perspective A1.6.1 The basic matter–field interaction A1.6.2 Coherence properties of light and matter A1.6.3 The field transfers its coherence to the matter A1.6.4 Coherent nonlinear spectroscopy A1.6.5 Coherent control of molecular dynamics References Further Reading A 1.7 Surfaces and interfaces A1.7.1 Introduction A1.7.2 Clean surfaces A1.7.3 Adsorption A1.7.4 Preparation of clean surfaces A1.7.5 Techniques for the investigation of surfaces A1.7.6 Liquid–solid interface References Part A2. Thermodynamics and Statistical Mechanics A 2.1 Classical thermodynamics A2.1.1 Introduction A2.1.2 The zeroth law A2.1.3 The first law A2.1.4 The second law A2.1.5 Open systems A2.1.6 Applications A2.1.7 The third law A2.1.8 Thermodynamics and statistical mechanics References Further Reading A 2.2 Statistical mechanics of weakly interacting systems A2.2.1 Introduction A2.2.2 Mechanics, microstates and the degeneracy function A2.2.3 Statistical ensembles A2.2.4 Canonical ensemble A2.2.5 Grand canonical ensemble A2.2.6 Summary References Further Reading A 2.3 Statistical mechanics of strongly interacting systems: liquids and solids A2.3.1 Introduction A2.3.2 Classical non-ideal fluids A2.3.3 Ensembles A2.3.4 Correlation functions of simple fluids A2.3.5 Equilibrium properties of non-ideal fluids A2.3.6 Perturbation theory A2.3.7 Solids and alloys A2.3.8 Mean-field theory and extensions A2.3.9 High- and low-temperature expansions A2.3.10 Exact solutions to the Ising model A2.3.11 Summary References Further Reading A 2.4 Fundamentals of electrochemistry A 2.4.1 The elementary theory of liquids A 2.4.2 Ionic solutions A2.4.3 Ionic conductivity A2.4.4 Ionic interactions A 2.4.5 The electrified double layer A 2.4.6 Thermodynamics of electrified interfaces A 2.4.7 Electrical potentials and electrical current References A 2.5 Phase transitions and critical phenomena A2.5.1 One-component first-order transitions A2.5.2 Phase transitions in two-component systems A2.5.3 Analytic treatment of critical phenomena in fluid systems. The van der Waals equation A2.5.4 Analytic treatments of other critical phenomena A2.5.5 The experimental failure of the analytic treatment A2.5.6 The Ising model and the gradual solution of the problem A2.5.7 The current status of the Ising model; theory and experiment A2.5.8 Other examples of second-order transitions A2.5.9 Multicritical points A2.5.10 Higher-order phase transitions Acknowledgments References Further Reading Part A3. Dynamical Processes A 3.1 Kinetic theory: transport and fluctuations A3.1.1 Introduction A3.1.2 The informal kinetic theory for the dilute gas A3.1.3 The Boltzmann transport equation A3.1.4 Fluctuations in gases References Further Reading A 3.2 Non-equilibrium thermodynamics A3.2.1 Introduction A3.2.2 General stationary Gaussian–Markov processes A3.2.3 Onsager’s theory of non-equilibrium thermodynamics A3.2.4 Applications A3.2.5 Linear response theory A3.2.6 Prospects References Further Reading A 3.3 Dynamics in condensed phase (including nucleation) A3.3.1 Introduction A3.3.2 Equilibrium systems: thermal fluctuations and spatio-temporal correlations A3.3.3 Non-equilibrium time-evolving systems A3.3.4 Late-stage growth kinetics and Ostwald ripening A3.3.5 Nucleation kinetics—metastable systems A3.3.6 Summary References Further Reading A 3.4 Gas-phase kinetics A3.4.1 Introduction A3.4.2 Definitions of the reaction rate A3.4.3 Empirical rate laws and reaction order A3.4.4 Elementary reactions and molecularity A3.4.5 Theory of elementary gas-phase reactions A3.4.6 Transition state theory A3.4.7 Statistical theories beyond canonical transition state theory A3.4.8 Gas-phase reaction mechanisms A3.4.9 Summarizing overview References Further Reading A 3.5 Ion chemistry A3.5.1 Introduction A3.5.2 Methodologies A3.5.3 Applications References Further Reading A 3.6 Chemical kinetics in condensed phases A3.6.1 Introduction A3.6.2 Static solvent effects A3.6.3 Transport effects A3.6.4 Selected reactions References A 3.7 Molecular reaction dynamics in the gas phase A3.7.1 Introduction A3.7.2 Theoretical background: the potential energy surface A3.7.3 Experimental techniques in reaction dynamics A3.7.4 Case study: the F + H2 reaction A3.7.5 Conclusions and perspectives References A 3.8 Molecular reaction dynamics in condensed phases A3.8.0 Introduction A3.8.1 The reactive flux A3.8.2 The activation free energy and condensed phase effects A3.8.3 The dynamical correction and solvent effects A3.8.4 Quantum activated rate processes and solvent effects A3.8.5 Solvent effects in quantum charge transfer processes A3.8.6 Concluding remarks References A 3.9 Molecular reaction dynamics: surfaces A3.9.1 Introduction A3.9.2 Reaction mechanisms A3.9.3 Collision dynamics and trapping in nonreactive systems A3.9.4 Molecular chemisorption and scattering A3.9.5 Dynamics of dissociation reactions A3.9.6 Eley–Rideal dynamics A3.9.7 Photochemistry A3.9.8 Outlook References Further Reading A 3.10 Reactions on surfaces: corrosion, growth, etching and catalysis A3.10.1 Introduction A3.10.2 Corrosion A3.10.3 Growth A3.10.4 Etching A3.10.5 Catalytic reactions References A 3.11 Quantum mechanics of interacting systems: scattering theory A3.11.1 Introduction A3.11.2 Quantum scattering theory for a one-dimensional potential function A3.11.3 Multichannel quantum scattering theory; scattering in three dimensions A3.11.4 Computational methods and strategies for scattering problems A3.11.5 Cumulative reaction probabilities A3.11.6 Classical and semiclassical scattering theory References Further Reading A 3.12 Statistical mechanical description of chemical kinetics: RRKM A3.12.1 Introduction A3.12.2 Fundamental assumption of RRKM theory: microcanonical ensemble A3.12.3 The RRKM unimolecular rate constant A3.12.4 Approximate models for the RRKM rate constant A3.12.5 Anharmonic effects A3.12.6 Classical dynamics of intramolecular motion and unimolecular decomposition A3.12.7 State-specific unimolecular decomposition A3.12.8 Examples of non-RRKM decomposition Acknowledgments References Further Reading A 3.13 Energy redistribution in reacting systems A 3.13.1 Introduction A 3.13.2 Basic concepts for inter- and intramolecular energy transfer A 3.13.3 Collisional energy redistribution processes A 3.13.4 Intramolecular energy transfer studies in polyatomic molecules A 3.13.5 IVR in the electronic ground state: the example of the CH chromophore A 3.13.6 Statistical mechanical master equation treatment of intramolecular energy redistribution in reactive molecules A 3.13.7 Summarizing overview on energy redistribution in reacting systems References Further Reading A 3.14 Nonlinear reactions, feedback and self-organizing reactions A3.14.1 Introduction A3.14.2 Clock reactions, chemical waves and ignition A3.14.3 Oscillations and chaos A3.14.4 Targets and spiral waves A3.14.5 Turing patterns and other structures A3.14.6 Theoretical methods References Further Reading Volume II. Methods Part B1. Determining Materials and Molecular Properties B1.1 Electronic spectroscopy B1.1.1 Introduction B1.1.2 Experimental methods B1.1.3 Theory B1.1.4 Examples References Further Reading B1.2 Vibrational spectroscopy B1.2.1 Introduction B1.2.2 Theory B1.2.3 Spectrometers B1.2.4 Typical examples B1.2.5 Conclusions and future prospects References Further Reading B1.3 Raman spectroscopy B1.3.1 Introduction B1.3.2 Theory B1.3.3 Raman spectroscopy in modern physics and chemistry B1.3.4 Applications B1.3.5 A snapshot of Raman activity in 1998 Appendix Acknowledgments Appendix Acknowledgments References Further Reading B1.4 Microwave and terahertz spectroscopy B1.4.1 Introduction B1.4.2 Incoherent THz sources and broadband spectroscopy B1.4.3 Coherent THz sources and heterodyne spectroscopy B1.4.4 Spectroscopy with tunable microwave and THz sources B1.4.5 Outlook References Further Reading B1.5 Nonlinear optical spectroscopy of surfaces and interfaces B1.5.1 Introduction B1.5.2 Theoretical considerations B1.5.3 Experimental considerations B1.5.4 Applications B1.5.5 Conclusion References Further Reading B1.6 Electron-impact spectroscopy B1.6.0 Introduction B1.6.1 Technology B1.6.2 Theory B1.6.3 Applications References Further Reading B1.7 Mass spectrometry B1.7.1 Introduction B1.7.2 Ion sources B1.7.3 Magnetic sector instruments B1.7.4 Quadrupole mass filters, quadrupole ion traps and their applications B1.7.5 Time-of-flight mass spectrometers B1.7.6 Fourier transform ion cyclotron resonance mass spectrometers References Further Reading B1.8 Diffraction: x-ray, neutron and electron B1.8.1 Introduction B1.8.2 Principles of diffraction B1.8.3 Structure determination B1.8.4 Experimental techniques B1.8.5 Frontiers References Further Reading B1.9 Scattering: light, neutrons, X-rays B1.9.1 Introduction B1.9.2 Interaction of radiation and matter B1.9.3 Light scattering B1.9.4 X-ray scattering B1.9.5 Neutron scattering B1.6.1 Concluding remarks References B1.10 Coincidence techniques B1.10 Introduction B1.10.2 Statistics B1.10.3 Time-of-flight experiments B1.10.4 Lifetime measurements B1.10.5 Coincidence experiments B1.10.6 Anti-coincidence References B1.11 NMR of liquids B1.11.1 Introduction B1.11.2 Nuclear spins B1.11.3 The NMR experiment B1.11.4 Quantitation B1.11.5 Chemical shifts B1.11.6 The detection of neighbouring atoms–couplings B1.11.7 Two-dimensional methods B1.11.8 Spatial correlations References Further Reading B1.12 NMR of solids B1.12.1 Introduction B1.12.2 Fundamentals B1.12.3 Instrumentation B1.12.4 Experimental techniques References Further Reading B1.13 NMR relaxation rates B1.13.1 Introduction B1.13.2 Relaxation theory B1.13.3 Experimental methods B1.13.4 Applications Acknowledgments References Further Reading B1.14 NMR imaging (diffusion and flow) B1.14.1 Introduction B1.14.2 Fundamentals of spatial encoding B1.14.3 Contrasts in MR imaging B1.14.4 Flow and diffusion References Further Reading B1.15 EPR methods B1.15.1 Introduction B1.15.2 EPR background B1.15.3 EPR instrumentation B1.15.4 Time-resolved CW EPR methods B1.15.5 Multiple resonance techniques B1.15.6 Pulsed EPR spectroscopy B1.15.7 High-field EPR spectroscopy References B1.16 Chemically-induced nuclear and electron polarization (CIDNP and CIDEP) B1.16.1 Introduction B1.16.2 CIDNP B1.16.3 CIDEP References Further Reading B1.17 Microscopy: electron (SEM and TEM) Abbreviations B1.17.1 Introduction B1.17.2 Interaction of electrons with matter and imaging of the scattering distribution B1.17.3 Instrumentation B1.17.4 Specimen preparation B1.17.5 Image formation and image contrast B1.17.6 Analytical imaging, spectroscopy, and mass measurements B1.17.7 3D object information Unknown References B1.18 Microscopy: light B1.18.1 Introduction B1.18.2 Magnification, resolution and depth of focus B1.18.3 Contrast enhancement B1.18.4 Scanning microscopy B1.18.5 Confocal scanning microscopy References Further Reading B1.19 Scanning probe microscopies B1.19.1 Introduction B1.19.2 Scanning tunnelling microscopy B1.19.3 Force microscopy B1.19.4 Scanning near-field optical microscopy and other SPMs B1.19.5 Outlook References B1.20 The surface forces apparatus B1.20.1 Introduction B1.20.2 Principles B1.20.3 Applications References Further Reading B1.21 Surface structural determination: diffraction methods B1.21.1 Introduction B1.21.2 Fundamentals of surface diffraction methods B1.21.3 Statistics of full structural determinations B1.21.4 Two-dimensional ordering and nomenclature B1.21.5 Surface diffraction pattern B1.21.6 Diffraction pattern of disordered surfaces B1.21.7 Full structural determination B1.21.8 Present capabilities and outlook Acknowledgments References Further Reading B1.22 Surface characterization and structural determination: optical methods B1.22.1 Introduction B1.22.2 IR spectroscopy B1.22.3 Laser-based spectroscopies B1.22.4 X-ray diffraction and x-ray absorption B1.22.5 Other optical techniques References B1.23 Surface structural determination: particle scattering methods B1.23.1 Introduction B1.23.2 Basic physics underlying keV ion scattering and recoiling B1.23.3 Instrumentation B1.23.4 Computer simulation methods B1.23.5 Elemental analysis from scattering and recoiling B1.23.6 Structural analysis from TOF-SARS B1.23.7 Structural analysis from SARIS B1.23.8 Ion–surface electron exchange B1.23.9 Role of scattering and recoiling among surface science techniques B1.23.10 Low-energy scattering of light atoms B1.23.11 Summary References Further Reading B1.24 Rutherford backscattering, resonance scattering, PIXE and forward (recoil) scattering B1.24.1 Introduction B1.24.2 Rutherford backscattering spectrometry (RBS) B1.24.3 In situ real-time RBS B1.24.4 Channelling B1.24.5 Resonances B1.24.6 Particle-induced x-ray emission (PIXE) B1.24.7 Nuclear microprobe (NMP) B1.24.8 Forward recoil spectrometry (FRS) References Further Reading B1.25 Surface chemical characterization B1.25.1 Introduction B1.25.2 Electron spectroscopy (XPS, AES, UPS) B1.25.3 Secondary ion mass spectrometry (SIMS) B1.25.4 Temperature programmed desorption (TPD) B1.25.5 Electron energy loss spectroscopy (EELS) References Further Reading B1.26 Surface physical characterization B1.26.1 Introduction B1.26.2 The Brunauer–Emmett–Teller (BET) method B1.26.3 Ellipsometry B1.26.4 Work-function measurements References B1.27 Calorimetry B1.27.1 Introduction B1.27.2 Relationship between thermodynamic functions and calorimetry B1.27.3 Operating principle of a calorimeter B1.27.4 Classification of calorimeters B1.27.5 Calorimeters for specific applications B1.27.6 Differential scanning calorimetry B1.27.7 Accelerating rate calorimetry B1.27.8 Specialized calorimeters B1.27.9 Recent developments References Further Reading Further Reading B1.28 Electrochemical methods B1.28.1 Introduction B1.28.2 Introduction to electrode reactions B1.28.3 Transient techniques B1.28.4 Steady-state techniques B1.28.5 Electrochemical impedance spectroscopy B1.28.6 Photoelectrochemistry B1.28.7 Spectroelectrochemistry References Further Reading B1.29 High-pressure studies B1.29.1 Introduction B1.29.2 What is pressure? B1.29.3 What pressures are high? B1.29.4 How are high pressures achieved? B1.29.5 How are high pressures measured? B1.29.6 High-pressure forms of familiar or useful materials: diamond, fluid metallic hydrogen, metallic oxygen, ionic carbon dioxide, gallium nitride B1.29.7 Spectroscopy at high pressures References Further Reading Part B2. Dynamic Measurements B 2.1 Ultrafast spectroscopy B2.1.1 Introduction B2.1.2 Femtosecond light sources B2.1.3 Femtosecond time-resolved spectroscopy References Further Reading B 2.2 Electron, ion and atom scattering B2.2.1 Introduction B2.2.2 Collisions B2.2.3 Macroscopic rate coefficients B2.2.4 Quantal transition rates and cross sections B2.2.5 Born cross sections B2.2.6 Quantal potential scattering B2.2.7 Collisions between identical particles B2.2.8 Quantal inelastic heavy-particle collisions B2.2.9 Electron–atom inelastic collisions B2.2.10 Semiclassical inelastic scattering B2.2.11 Long-range interactions References Further Reading B 2.3 Reactive scattering B2.3.1 Introduction B2.3.2 Crossed-beams method B2.3.3 Optical detection of the reaction products B2.3.4 Conclusion References Further Reading B 2.4 NMR methods for studying exchanging systems B2.4.1 Introduction B2.4.2 Intermediate exchange B2.4.3 Fast exchange B2.4.4 Slow exchange B2.4.5 Exchange in solids B2.4.6 Conclusions References Further Reading B 2.5 Gas-phase kinetics studies B2.5.1 Introduction B2.5.2 Flow tubes B2.5.3 Relaxation methods B2.5.4 Flash photolysis with flash lamps and lasers B2.5.5 Multiphoton excitation B2.5.6 Chemical activation B2.5.7 Line-shape methods B2.5.8 Intramolecular kinetics from high-resolution spectroscopy B2.5.9 Summarizing overview on gas-phase kinetics studies References Further Reading Part B3. Techniques for Applying Theory B 3.1 Quantum structural methods for atoms and molecules B3.1.1 What does quantum chemistry try to do? B3.1.2 Why is it so difficult to calculate electronic energies and wavefunctions with reasonable accuracy? Unknown B3.1.4 How to introduce electron correlation via configuration mixing B3.1.5 The single-configuration picture and the HF approximation B3.1.6 Methods for treating electron correlation B3.1.7 There are methods that calculate energy differences rather than energies B3.1.8 Summary of ab initio methods References B 3.2 Quantum structural methods for the solid state and surfaces B3.2.1 Introduction B3.2.2 Tight-binding methods B3.2.3 First-principles electronic structure methods B3.2.4 Quantum structural methods for solid surfaces B3.2.5 Outlook Acknowledgments References Further Reading B 3.3 Statistical mechanical simulations B3.3.1 Introduction B3.3.2 Simulation and statistical mechanics B3.3.3 Molecular dynamics B3.3.4 Monte Carlo B3.3.5 Simulation in different ensembles B3.3.6 Free energies, chemical potentials and weighted sampling B3.3.7 Configuration-biased MC B3.3.8 Phase transitions B3.3.9 Rare events B3.3.10 Quantum simulation using path integrals B3.3.11 Car–Parrinello simulations B3.3.12 Parallel simulations B3.3.13 Outlook References Further Reading B 3.4 Quantum dynamics and spectroscopys B3.4.1 Introduction B3.4.2 Quantum motion on a single electronic surface B3.4.3 Scattering B3.4.4 Arrangement decoupling by absorbing potentials B3.4.5 Coarse information B3.4.6 Photo–dissociation B3.4.7 Bound states and resonances–extraction B3.4.8 Beyond grids B3.4.9 Non–adiabatic effects B3.4.10 Controlling molecular motion References B 3.5 Optimization and reaction path algorithms B 3.5.1 Introduction B 3.5.2 Overview of techniques for local optimization B 3.5.3 The optimization of wavefunctions B 3.5.4 Optimization of molecular geometries B 3.5.5 Optimization of transition states B 3.5.6 Simultaneous optimization of geometries and wavefunctions B 3.5.7 Reaction path algorithms B 3.5.8 Global optimization References Further Reading B 3.6 Mesoscopic and continuum models B3.6.1 Introduction B3.6.2 Polymeric systems B3.6.3 Amphiphilic models B3.6.4 Applications to dynamic phenomena References Further Reading Volume III. Applications Part C1. Microscopic Systems C 1.1 Clusters C1.1.1 Clusters C1.1.2 Techniques for cluster generation and detection in the gas phase C1.1.3 Metal clusters C1.1.4 Semiconductor clusters C1.1.5 Ionic clusters and mixed clusters C1.1.6 Rare-gas clusters and other weakly bonded molecular clusters C1.1.7 Outlook References Further Reading C 1.2 Fullerenes Introduction C1.2.1 Structure C1.2.2 Crystal structure C1.2.3 Electronic configuration c1.2.4 Thin films C1.2.5 Doping of fullerenes and superconductivity C1.2.6 Fullerene polymers C1.2.7 Langmuir–Blodgett films C1.2.8 Electrochemistry C1.2.9 Solubility C1.2.10 Photoexcited states C1.2.11 p-radical anions C1.2.12 Electron transfer reactions C1.2.13 Endohedral fullerenes C1.2.14 Concluding remarks References Further Reading C 1.3 Van der Waals molecules C1.3.1 Introduction C1.3.2 Types of spectroscopy C1.3.3 Examples References Further Reading C 1.4 Atom traps and studies of ultracold systems C1.4.1 Introduction C1.4.2 The physics of neutral-atom traps C1.4.3 Inelastic exoergic collisions in MOTs References Further Reading C 1.5 Single molecule spectroscopy C1.5.1 Introduction C1.5.2 History C1.5.3 Principles and techniques of single-molecule optical C1.5.4 Systems and phenomena C1.5.5 Conclusion Acknowledgments References Part C2. Extended and Macroscopic Systems C2.1 Polymers C2.1.1 Introduction C2.1.2 Polymer synthesis C2.1.3 Conformation of a single chain C2.1.4 Solution, melt and glass C2.1.5 Thermodynamics and phase transition of polymer mixtures C2.1.6 Partially crystalline polymers C2.1.7 Polymer dynamics and mechanical behaviour C2.1.8 Nonlinear mechanical behaviour C2.1.9 Diffusion in polymers C2.1.10 Computer simulations References Further Reading C2.2 Liquid crystals Introduction c2.2.1 Types of liquid crystal C2.2.2 Characteristices of liquid crystal phases C2.2.3 Theory C2.2.4 Applications of liquid crystals acknowledgments References Further Reading C2.3 Micelles C2.3.1 Introduction c2.3.2 Historical overview c2.3.3 Surfactants C2.3.4 Experimental methods for examining micelles and micellization c2.3.5 Thermodynamics of micellization C2.3.6 Morphology and structure c2.3.7 Statistical mechanical simulations C2.3.8 Reverse micelles C2.3.9 Solubilization and partitioning C2.3.10 Micellar catalysis C2.3.11 Microemulsions c2.3.12 Emulsion polymerization c2.3.13 Micellar and microemulsion polymerization c2.3.14 Micelle-based mesophases c2.3.15 Adsorbed micelles c2.3.16 Micelle–Polymer interactions References C2.4 Organics films (Langmuir-Blodgett films and self-assembled monolayers) C2.4.0 Introduction C2.4.1 Langmuir–Blodgett films C2.4.2 Self-assembled monolayers (SAMs) References C2.5 Introducing protein folding using simple models C2.5.1 Introduction C2.5.2 Random heteropolymer as a caricature of proteins C2.5.3 Lattice models of proteins Acknowledgments Appendix C2.5.A Appendix C2.5.B References C2.6 Colloids C2.6.1 Introduction C2.6.2 Model colloids C2.6.3 Properties and characterization methods C2.6.4 Particle interactions C2.6.5 Colloid stability and aggregation C2.6.6 Behaviour of concentrated suspensions Acknowledgments References Further Reading C2.7 Catalysis C2.7.1 Introduction C2.7.2 Classification of catalysts and catalysis C2.7.3 A bit of history—the ammonia synthesis reaction C2.7.4 Catalytic cycles C2.7.5 Macroscopic physical properties of catalysts C2.7.6 Examples of catalysis References Further Reading C2.8 Corrosion C2.8.1 Introduction C2.8.2 Electrochemical fundamentals [