دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: علم شیمی ویرایش: نویسندگان: Florin Emilian Daneș, Silvia Daneș, Valeria Petrescu, Eleonora-Mihaela Ungureanu سری: ISBN (شابک) : 3030638952, 9783030638955 ناشر: Springer سال نشر: 2021 تعداد صفحات: 407 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 9 مگابایت
در صورت تبدیل فایل کتاب Molecular Physical Chemistry for Engineering Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب شیمی فیزیکی مولکولی برای کاربردهای مهندسی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Authors From the Same Authors Preface Macroscopic and Microscopic in Matter Sciences The Document Subdivision Contents Notations (Symbols) Latin Symbols Greek Symbols Indices Exponents Prefixes Binary Operators Other Operators Abbreviations Constants and Units of Measure Universal Physical Constants Six Fundamental Quantities of the S.I. Other Quantities (of measure) Part I: Molecular Structure of Matter The Atom and the Molecule Chapter 1: Molecular Physics 1.1 Structure of Matter and Molecular Physics Quantum Physics Statistical Physics Molecular Kinetics 1.2 Statistical Physics of Particles Microstate: An Elementary Configuration of Particles Microstates and Macrostates Thermodynamic Probability Mathematical and Thermodynamic Probabilities Combinatorial Analysis Calculation Stirling´s Approximations Energy Conservation for a Set of Particles Discernibility of Particles and Limitation of their Number 1.3 Distribution of Particles on Energy Levels System´s Discrete Energy Values Distribution on Non-degenerate Energy Levels Degeneracy of Energy Levels Distribution on Degenerate Energy Levels Highly Degenerated Systems 1.4 Boltzmann´s Relationship Between Entropy and Probability Parallelism of Thermodynamic Probability with Entropy Entropy of Mixing Thermodynamic Interpretation of Boltzmann Equation 1.5 Distribution of Particles on Energetic Levels Equilibrium and Evolution in Statistical Mechanics Maximization of Thermodynamic Probability Partition Functions Partition Function and Thermodynamic Properties Maxwell-Boltzmann Distribution of Energies 1.6 Factors Influencing the Equilibrium Distribution Boltzmann Factor of the Energy Level Energy Level Multiplicity and System Size Effects Influence of Temperature on Distribution 1.7 Deviations from Equilibrium Distribution Non-equilibrium States Simplest Change of State Relative Stability of a Non-Equilibrium State Role of the Non-Equilibrium Extent Relative Probability of a Non-Equilibrium State Fluctuation Errors 1.8 Statistics of Thermodynamic Properties Internal Energy Entropy Free Energy Caloric Capacity Properties Depending on Pressure 1.9 Five Worked Examples Chapter 2: Statistical Thermodynamics of Ideal Gas 2.1 Components of the Partition Function Composition of the Sum-Over-States Molecule Displacement and Motion Simplifications of Composition Laws Sum-Over-States with Single Term and Integrals Perfect Gas and Ideal Gas 2.2 Nuclear Partition Function Atom and Molecular Partition Functions Nuclear Partition Function of Polyatomic Molecules Nuclear Contribution to Thermodynamic Functions Practical Functions and Spectroscopic Functions 2.3 Electronic Partition Functions Electronic Contribution to the Thermodynamic Functions Electronic Sum-Over-States for Monoatomic Molecules Spectral Term for Atoms Electronic Sum-Over-States of Polyatomic Molecules 2.4 Translational Motion Physical Space and Phase Space Translational Distribution Function Translational Sum-Over-States Translational Partition Function Thermodynamic Translational Functions 2.5 Thermodynamics of Monoatomic Ideal Gas 2.6 Rotational and Vibrational Motions Rigid Rotor Geometry Sum-Over-States of Molecule Rotation Effect of Temperature on Rotational Sum-Over-States The Harmonic Oscillator as a Vibrator Vibrational Sum-Over-States 2.7 Thermodynamics of Diatomic Ideal Gas Contribution of Rotation to Thermodynamic Functions Experimental Determination of the Rotational Contribution Spectral Features of Rotation Vibrational Einstein Functions Characteristic Vibrational Temperatures Total Thermodynamic Functions of Diatomic Molecule Temperature Dependence on Heat Capacity 2.8 Thermodynamics of the Polyatomic Ideal Gas Thermodynamics of Rotation for Polyatomic Molecules Moment of Inertia for a Polyatomic Molecule Vibrational Sum-Over-States for Polyatomic Molecules Vibrational Thermodynamics for Polyatomic Molecules 2.9 Equipartition of Energy Over the Degrees of Freedom Degrees of Freedom for Energy Equipartition 2.10 Five Worked Examples Chapter 3: Distribution of Molecular Properties in Gases 3.1 Elements of the General Theory of Distribution Distribution for the Reduced Size Sample Distribution Functions Differential Distribution Function Integral Distribution Function Link between Differential and Integral Distribution Functions Normalization of Distributions Concomitant Distribution of Several Quantities 3.2 Molecular Velocities Distributions Concomitant Distribution of Position and Momentum Coordinates Concomitant Distribution of the Three Velocities Projections Velocity Projection Distribution after a Given Direction Particles Velocity Distribution Velocity Distribution Function Form 3.3 Features of Velocity and Its Projections The Most Probable Value Mean Values Arithmetic Mean Value Quadratic Mean Value of Velocity Projections Velocity Quadratic Mean Value Factors Influencing Velocities Distribution 3.4 Molecular Energies Distribution Translational Energy Distribution Degrees of Freedom for Molecules Energy Distribution Mean Energies 3.5 Wall Collision of Gaseous Molecules Molecular Number Density Wall Collisions Frequency Molecule-Wall Collisions in Physics and Chemistry 3.6 Intermolecular Collisions within Gases Identical Type Molecules Collisions Different Type Molecules Collisions Density of Intermolecular Collisions in Pure Gases Density of Intermolecular Collisions in Multicomposant Gases Macroscopic Factors Effect on Collisions 3.7 Molecular Diameters Molecular Diameter Evaluation Methods Molecular Diameter Dependence on Temperature 3.8 Mean Free Path Free Path Dependence on Temperature Free Path in Knudsen Regime Free Path in Intermediate Pressures Domain 3.9 Triple Collisions Relative Frequency of Double and Triple Collisions 3.10 Eleven Worked Examples Part II: Molecular Models in Thermodynamics Phenomenological and Molecular Thermodynamics Chapter 4: Models in Thermodynamics of Real Gases 4.1 Equation of State (ES) and PVT Dependencies Graphical PVT Dependencies Analytical Formulations of ES 4.2 Van der Waals (VdW) ES Deduction of VdW ES Internal Pressure Covolume Values of VdW Equation´s Constants VdW Equation´s Constants Incremental Calculation 4.3 Diversity of the ESs Material Constants Examples of ESs for Gases ESs with Numerous Material Constants Applications of ESs Virial ES 4.4 Features of Thermal ES Attraction and Repulsion in ES Cubic ESs Completely or Incompletely Defined ES Functional Parameters Restrictions for the ES Modified ES ES Modification 4.5 Pressure Dependence on Volume Boyle Curve Boyle Temperature Boyle Features of VdW Gas Boyle Temperature of VdW Gas 4.6 Pressure Dependence on Temperature Joule-Thomson Curve Real Gas Isochores 4.7 Real Gas Molecular Models Intermolecular Potential Spherical Potentials Mie Potential Lennard Jones Potential 4.8 ES for Real Gases Mixtures The Complete ES Fugacity of Compounds in a Gas Mixture Material Constants for Mixtures Combination Rules of Components Constants Combination Rules of Components Pairs Properties of Components in a Mixture Combination of ESs 4.9 Interactions among Components in a Mixture Interaction Formulae 4.10 Four-Worked Examples Chapter 5: Liquid-Vapor Equilibrium Models - Critical Point, Corresponding States, and Reduced Properties 5.1 Phase Equilibrium of Pure Substances Vapors in Molecular Physics Mono-Component System: Phase Diagrams Mono-Component System: The State Diagrams Triple Points Singularity of Vaporization among Phase Transitions Variation of Properties on the Vaporization Curve Single-Phase Fluid 5.2 Pure Substances´ Critical Point Critical Point in Molecular Thermodynamics Critical Exponents Peri-critical Domain and Critical Exponents Experimental Determination of Critical Quantities Critical Quantities Examples Critical Quantities Values Dependence of the Critical Point on the Nature of the Substance 5.3 ES and the Critical Point From ES to Critical Point VdW ES Critical Quantities Critical Quantities for Other ES Redlich and Kwong Critical Quantities of ESs with more than Two Constants Clausius Martin From Critical Point to ES 5.4 ES and Liquid-Vapor Equilibrium Liquid-Vapor Equilibrium in the Pressure/Volume Graph Stable, Metastable, and Unstable Monophasic States Calculation of PVT Equilibrium Features for VdW Fluid 5.5 Stability of the Liquid-Vapor Equilibrium Binodal Curve Spinodal Curve Spinodal and Binodal Curves within the Peri-critical Domain 5.6 Corresponding States Reduced Properties Reduction Method through Critical Quantities Principle of Corresponding States (PCS) Reduced ES Heat Capacities from Reduced ES Ideality Deviation Calculation through Reduced ES 5.7 Physicochemical Similarity Hougen-Watson Diagram Extended PCS Physicochemical Similarity Criteria Material Constants Calculation from ES 5.8 Critical Point of Mixtures Pseudocritical Properties 5.9 Six Worked Examples Chapter 6: Thermodynamic Models of Condensed Phases 6.1 State of Aggregation Condensed States of Aggregation Liquid State Particularities Thermodynamic Physical Quantities in Liquids Non-thermodynamic Macroscopic Physical Quantities 6.2 Molecular Structure of the States of Aggregation Diagrams of Interference Continuous and Discontinuous Spatial Distributions Molecular Order in Liquids Coordination Number at Different Temperatures Coordination Number at Liquids and Solids Void Fraction Deduction 6.3 Liquid Models ES of a Liquid as an Extremely Compressed Gas Internal Pressure ``Gaseous´´ Type Liquid Models Mayer Model for Correlation Functions Bogoliubov Model of Molecular Dynamics ``Solid´´ Type Liquid Models Devonshire Cell Model Eyring Free Volume Model Thermodynamic-Statistical Calculation of Free Volume Calculation of Free Volume from Speed of Sound Frenkel Model of Empty Cells Significant Structure Theory: Gas and Solid 6.4 Equilibrium Structural Models for Solids Types of Solids Crystal Quantity Models Einstein Vibrations Thermodynamic Functions of Einstein Vibration Dulong-Petit Law Einstein Model at Low Temperatures 6.5 Debye Vibrations Debye Vibrational Sum-Over-States Debye and Einstein Phononic Heat Capacities Debye Thermodynamic Quantities at Low Temperatures Debye Temperature Measurement 6.6 Other Contributions to Sum-Over-States Conductivity Electrons Sum-Over-States Magnetic Component Sum-Over-States of Combinations´ Crystals 6.7 Lattice Energy from Molecular Interactions Lattice Energy Determination Methods Lattice Energy from the Born-Landé Potential Lattice Geometry and Madelung Constant Lattice Energy from Mie Potential 6.8 Hess´s Law Lattice Energies Born-Haber Cycle Steps Born-Haber Lattice Energy for Aluminum Oxide Born-Haber Cycle for Other Ionic Crystals Atomic, Molecular or Metallic Lattice Crystals 6.9 Real Crystal Lattice Defects Punctiform Defect Generation Schottky Defect Frenkel Defect Thermodynamics of Schottky Defect Formation Thermodynamics of Frenkel Defect Formation Defect Ratio Dependence on Temperature 6.10 Seven Worked Examples Part III: Transport Phenomena and Their Mechanism Disequilibrium and Evolution Transfer Transport Chapter 7: General Laws of Transport in Gases 7.1 Physical Kinetics Equilibrium and Disequilibrium-Kinetics and Thermodynamics Nuclear, Chemical, and Physical Kinetics Transfer and Stationarity Transfer: Location and Mechanism 7.2 Transport Phenomenology Viscous Flow Heat Conduction Stationary Heat Transport and the Isolated System Transport Mass Transport Diffusivity Interdiffusion Transport Phenomena Similarity General Law of Transport 7.3 Transport in Perfect Gases Free Path and Transport in Gases General Equation of Transport in Perfect Gases Viscosity of Gases Gas Viscosity Dependence on Different Factors Thermal Conductivity in Gases Diffusion Molecular Diameter Dependence on Temperature Collision Integrals Calculation Dimensionless Transport Criteria Prandtl Criterion Schmidt Criterion 7.4 Transport in Mixtures of Perfect Gases Interdiffusion in Binary Gas Mixtures Interdiffusion and Self-diffusion Diffusion in Mixtures with More than Two Components 7.5 Pressure Effect on Transport in Gases Transport Regimes Applicability Pressure Effect on Transport Regime 7.6 Knudsen Transport Field Knudsen Viscosity Field Law of Cosines Mechanical Accommodation Coefficients Thermal Conductivity and Diffusion at Low Pressures Diffusion Effusion 7.7 Pure Real Gases at Moderate Pressures Knudsen and ``Normal´´ Simultaneous Transport Corresponding States for Transport Phenomena The Reference State Corresponding States Intermolecular Potential Transport in Mixtures of Real Gases 7.8 Transport in Pure Gases at High Pressure Kinematic Viscosity Minimum Value Transport Coefficients Dependence on Temperature Reduction to Critical Features Transport in Gas Mixtures 7.9 Seven Worked Examples Chapter 8: Transport in Liquids and Solids 8.1 Transport and State of Aggregation Thermal Conduction Diffusion Rheology Liquids Viscosity 8.2 Variation of Viscosity with State Quantities Variation of Viscosity with Temperature Voids Theories to Explain the Temperature Effect on Viscosity Mobility of Voids Frequency of Jumps between Voids Variation of Liquid Viscosity with Pressure Calculation of Viscosity Dependence on Pressure 8.3 Viscosity Variation with the Nature of the Liquid Comparison of Liquid Viscosities Systems of Increments Orthochor Function Rheochor Function Viscosity of Liquid Mixtures Intrinsic Viscosity 8.4 The Flow Process Flowing Regimes Reynolds Criterion Laminar Flow within a Circular Section Tube Fanning and Hagen-Poiseuille Relations Turbulent Flow Energy Consumption in Different Flow Regimes 8.5 Rheology of Liquids Non-Newtonian Liquids Types of Non-Newtonian Rheology Liquids Viscoelastic Behavior Time as State Variable in Rheology Structural Explanations of Viscoelasticity Maxwell Viscoelastic Model 8.6 Heat Conduction Mass and Heat Transfer in Condensed States of Aggregation Thermal Conductivity of Liquids Models of Energy Transfer into Liquids Heat Conduction in Solids 8.7 Diffusion Diffusion in Solids Diffusion in Liquids Diffusivity/Viscosity Correlation for Liquids Crystalline Lattice Defects Defect Classification According to their Dimension Number Three-Dimensional Defects Two-Dimensional Defects One-Dimensional Defects Zero-Dimensional Defects Punctiform Defects in Simple Lattices Punctiform Defects in Nonequivalent Node Lattices Diffusion in Solids Diffusion Mechanisms in Solids 8.8 Nine Worked Examples Mathematical Annex A.1 Basic Notions The Factorial Double The Integration by Parts The Recurrence A.2 Gamma Functions The Parity of the Gamma Function Index When n Is Even When n Is Uneven A.3 The Integration of the Exponential/Polynomial Product A.4 Decompositions According to Series of Integer Powers The Definitions of Taylor´s and MacLaurin´s Series Usual Decompositions in a MacLaurin Series A.5 The Rapid Solution of Algebraical Equations The Iterative Method The Secant Method Complementary Readings Index