دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 3
نویسندگان: Markus Rudin
سری:
ISBN (شابک) : 1786346842, 9781786346841
ناشر: WSPC (Europe)
سال نشر: 2020
تعداد صفحات: 801
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 402 مگابایت
در صورت تبدیل فایل کتاب Molecular Imaging: Basic Principles and Applications in Biomedical Research به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تصویربرداری مولکولی: اصول و کاربردهای اساسی در تحقیقات زیست پزشکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
منطقه تصویربرداری مولکولی در دهه گذشته بالغ شده است و هنوز هم به سرعت در حال رشد است. بسیاری از مفاهیم توسعه یافته برای زیست شناسی مولکولی و تصویربرداری سلولی با موفقیت به تصویربرداری in vivo از موجودات دست نخورده ترجمه شده است. تصویربرداری مولکولی امکان مطالعه فرآیندها را در سطح مولکولی در زمینه بیولوژیکی کامل آنها فراهم می کند. با توجه به ویژگی بالای بازخوانی های مولکولی، این رویکرد دارای پتانسیل بالایی برای تشخیص است. منصفانه می توان گفت که امروزه تصویربرداری مولکولی به ابزاری ضروری برای تحقیقات زیست پزشکی و کشف و توسعه دارو تبدیل شده است.
این جلد خواننده را با مفاهیم تصویربرداری و تصویربرداری مولکولی به ویژه آشنا می کند. اصول اولیه فناوریهای تصویربرداری، بخشهای گزارشگر برای روشهای مختلف تصویربرداری، و طراحی پروبهای هدفمند در بخش اول توضیح داده شدهاند. بخش دوم نشان می دهد که چگونه می توان از این ابزارها برای تجسم رویدادهای مولکولی مرتبط در موجود زنده استفاده کرد. موضوعات تحت پوشش شامل مطالعات توزیع زیستی کاوشگرها و داروها، تجسم بیان مولکول های زیستی مانند گیرنده ها و آنزیم ها، و نحوه استفاده از تصویربرداری برای تجزیه و تحلیل پیامدهای تعامل یک لیگاند یا یک دارو با هدف مولکولی آن از طریق تجسم است. انتقال سیگنال، یا ارزیابی پاسخ متابولیک، فیزیولوژیکی، یا ساختاری ارگانیسم مورد مطالعه.
ویرایش سوم به طور قابل توجهی گسترش یافته است. این برای فصل روشهای تصویربرداری، که اکنون شامل بخشهایی درباره میکروسکوپ داخل حیاتی و تصویربرداری طیفسنجی جرمی است، صادق است. همه فصل ها به روز شده اند و فصل جدیدی در مورد چالش های ترجمه راه حل های تصویربرداری مولکولی برای استفاده بالینی اضافه شده است.
The area of molecular imaging has matured over the past decade and is still growing rapidly. Many concepts developed for molecular biology and cellular imaging have been successfully translated to in vivo imaging of intact organisms. Molecular imaging enables the study of processes at a molecular level in their full biological context. Due to the high specificity of the molecular readouts the approach bears a high potential for diagnostics. It is fair to say that molecular imaging has become an indispensable tool for biomedical research and drug discovery and development today.
This volume familiarizes the reader with the concepts of imaging and molecular imaging in particular. Basic principles of imaging technologies, reporter moieties for the various imaging modalities, and the design of targeted probes are described in the first part. The second part illustrates how these tools can be used to visualize relevant molecular events in the living organism. Topics covered include the studies of the biodistribution of reporter probes and drugs, visualization of the expression of biomolecules such as receptors and enzymes, and how imaging can be used for analyzing consequences of the interaction of a ligand or a drug with its molecular target by visualizing signal transduction, or assessing the metabolic, physiological, or structural response of the organism studied.
The third edition has been extended considerably. This holds for the chapter on imaging modalities, which now includes sections on intravital microscopy and mass spectrometric imaging. All chapters have been updated and a new chapter on the challenges of translating molecular imaging solutions for clinical use has been added.
Contents Preface to the First Edition Preface to the Second Edition Preface to the Third Edition About the Author Acknowledgments 1. Introduction 1.1 Biomedical Research: Elucidating Molecular Mechanisms of Disease 1.1.1 Tumorigenesis as result of multiple mutations and interplay with microenvironment 1.1.2 Pathogenesis in Alzheimer’s-type dementia 1.1.3 Multiple factors causing disease: Multiplexed diagnostic tools 1.2 Imaging in Biomedical Research 1.2.1 Imaging as a two-stage mapping process 1.2.2 Digital imaging 1.2.2.1 Parameter averaging across voxel 1.2.2.2 Contrast-to-noise ratio and spatial resolution 1.2.2.3 Morphometry and densitometry 1.3 Target-Specific or Molecular Imaging 1.3.1 Definition: Molecular imaging 1.3.2 Imaging targets 1.3.3 Prerequisites for molecular imaging: Reporter constructs 1.3.4 Prerequisites for molecular imaging: Imaging modalities 1.3.5 Molecular imaging modalities 1.3.6 Comparison of imaging modalities 1.4 Summary References Part 1: Methodologies 2. Imaging Techniques 2.1 X-ray Computer Tomography (X-ray CT) 2.1.1 Interaction of X-rays with tissue 2.1.2 Principles of X-ray CT 2.1.3 Image representation, spatial resolution, and contrast-to-noise ratio 2.1.4 Phase contrast X-ray imaging 2.1.5 Small-angle-X-ray scattering (SAXS) tomography 2.1.6 Animal CT scanners 2.2 Magnetic Resonance Imaging 2.2.1 Interaction of a nuclear magnetic moment with a static magnetic field 2.2.2 Classical description of NMR: Bloch equations 2.2.3 Relaxation 2.2.4 The NMR experiment 2.2.5 Measurement of relaxation rates in FT-NMR 2.2.5.1 Measurement of the transverse relaxation rate R2 2.2.5.2 Measurement of the longitudinal relaxation rate R1 2.2.6 Principles of magnetic resonance imaging 2.2.6.1 Spatial encoding 2.2.6.2 The k-space concept 2.2.6.3 Slice selection 2.2.6.4 Some basic image acquisition modules 2.2.7 Contrast in MRI, signal enhancement by contrast agents 2.2.8 In vivo magnetic resonance spectroscopy 2.2.8.1 Selecting the volume of interest for in vivo MRS 2.2.8.2 Issues with MRS as molecular imaging modality 2.2.8.3 Sensitivity enhancement by hyperpolarization of nuclear spin systems 2.2.9 Animal MRI scanners 2.3 Nuclear Imaging: Gamma Scintigraphy, Single Photon Emission Computerized Tomography 2.3.1 The gamma camera: Projection images 2.3.2 3D gamma imaging: Single photon emission computed tomography (SPECT) 2.3.3 High-resolution animal SPECT instrumentation 2.4 Positron Emission Tomography 2.4.1 Physical principles of PET 2.4.2 Image reconstruction 2.4.2.1 Filtered backprojection 2.4.2.2 Statistical image reconstruction 2.4.2.3 3D reconstruction procedures 2.4.3 High-resolution animal PET instrumentation 2.5 Optical Imaging 2.5.1 Photon propagation in scattering media 2.5.1.1 The diffusion equation for light propagation in tissue 2.5.1.2 Solutions of the diffusion equation 2.5.2 Planar imaging/reflectance imaging 2.5.3 Fluorescence molecular tomography 2.5.4 Non-contact optical tomography 2.5.5 Instrumentation for reflectance fluorescence imaging and fluorescence molecular tomography 2.5.6 Intravital Microscopy Techniques 2.5.6.1 Intravital confocal microscopy 2.5.6.2 Two-photon/multiphoton microscopy 2.5.6.3 Optical Coherence Tomography 2.5.7 Optical Projection Tomography 2.5.8 Raman spectroscopic imaging 2.6 Mass Spectrometry Imaging 2.7 Ultrasound Imaging 2.7.1 Principles of ultrasound imaging 2.7.1.1 Introduction, definitions 2.7.1.2 Attenuation 2.7.1.3 Reflection and refraction 2.7.1.4 Scattering 2.7.2 Axial and angular resolution, frame rate 2.7.2.1 Spatial resolution 2.7.3 Ultrafast ultrasound imaging 2.7.4 Contrast enhancement in ultrasound 2.8 Photoacoustic Imaging 2.8.1 Generation of photoacoustic signal 2.8.2 Photoacoustic image reconstruction 2.8.3 Fast/real-time photoacoustic imaging 2.8.4 Spectral photoacoustic imaging 2.8.5 Photoacoustic imaging at microscopic resolution 2.9 Hybrid Techniques 2.9.1 PET/CT 2.9.2 PET/MRI 2.9.3 PET image reconstruction with anatomical priors 2.9.4 FMT/CT 2.9.5 FMT/MRI 2.9.6 Combination of macroscopic imaging with fiber optical recordings 2.10 Summary References 3. Molecular Reporter Systems 3.1 X-ray Contrast Agents 3.1.1 Introduction 3.1.2 Iodine-based contrast agents 3.2 MRI Contrast Agents 3.2.1 Factors determining the relaxivity of contrast agents 3.2.2 Gadolinium-based contrast agents 3.2.3 Magnetic nanoparticles 3.2.4 Liposomes/micelles/microemulsions 3.2.5 Chemical exchange saturation transfer (CEST) contrast agent 3.2.6 Hyperpolarization by dynamic nuclear polarization (DNP) 3.2.7 MRI reporter gene systems 3.3 SPECT Radioisotopes 3.3.1 Radioisotopes for gamma scintigraphy/SPECT imaging 3.3.2 Technetium-99m 3.3.3 Indium-111 3.3.4 Iodine-123 and iodine-131 3.4 PET Radioisotopes 3.4.1 Production of radionuclides, lifetimes 3.4.2 Carbon-11-labeled compounds 3.4.3 Fluorine-18-labeled compounds 3.4.4 Other PET nuclei 3.4.5 PET reporter genes 3.5 Optical Probes: Fluorescence and Bioluminescence Probes 3.5.1 Principles of fluorescence 3.5.2 Fluorescent dyes 3.5.3 Fluorescent nanocrystals, quantum dots 3.5.4 Genetically encoded fluorescent reporters: Fluorescent proteins 3.5.5 Light-activatable proteins for interventions: Optogenetics 3.5.6 Fluorescence resonance energy transfer quenching 3.5.7 Phosphorescence, phosphorescence lifetime 3.5.8 Bioluminescence 3.5.9 Probes for photoacoustic imaging 3.6 Contrast Agents for Ultrasound Imaging 3.6.1 Microbubbles 3.6.2 Non-microbubble-based contrast agents 3.7 Summary References 4. Design of Molecular Imaging Probes 4.1 Design of Target-Specific Probes 4.1.1 Low molecular weight probes 4.1.2 Macromolecular probes: Antibodies, oligonucleotides 4.1.3 Activatable probes (‘smart’ probes) 4.1.3.1 Change in fluorescent properties 4.1.3.2 ‘Caged’ bioluminescent probes 4.1.3.3 Change in magnetic relaxation rates 4.2 Probe Delivery, Cell Penetration 4.2.1 Cell penetrating peptides (CPPs) 4.2.2 Receptor-mediated endocytosis 4.2.3 Transfection agents 4.3 Signal Amplification 4.3.1 Increasing the payload of reporters per target 4.3.2 Trapping of reporters 4.3.3 Enzymatic probe activation 4.4 Physiological Amplification 4.5 Summary References Part 2: Applications 5. Drug Imaging 5.1 Drug Biodistribution and Pharmacokinetics 5.1.1 Ex vivo techniques: Autoradiography and MS imaging 5.1.2 In vivo studies using nuclear imaging techniques 5.1.2.1 Labeling by radioisotopes to preserve pharmacokinetic properties 5.1.2.2 Dose linearity 5.1.2.3 Correction for plasma contribution 5.1.2.4 Examples: CNS drugs 5.2 Receptor Occupancy Studies 5.2.1 Receptor binding in a homogeneous compartment 5.2.2 Compartment models for estimation of tracer concentrations 5.2.3 Indirect imaging or drug-receptor interactions 5.2.4 Receptor occupancy studies: Examples 5.3 Summary References 6. Imaging Gene Expression 6.1 Visualizing Transcription: Targeting mRNA using Labeled Antisense Oligonucleotides 6.2 Direct Target Imaging Using Receptor-Specific Ligands 6.2.1 Low molecular weight (LMW) ligands 6.2.1.1 Peptidic probes targeting tumors 6.2.1.2 LMW probes targeting molecules involved in neurotransmission 6.2.1.3 Small molecule probes for studying Alzheimer’s disease 6.2.2 Antibodies and antibody fragments 6.2.2.1 Endovascular targets: Atherosclerosis, inflammation, tumor angiogenesis 6.2.2.2 Tumor-specific antibody probes 6.2.2.3 General comments regarding antibodies as targeting moieties 6.2.3 Enzymatic drug targets 6.2.3.1 Measuring enzyme activity 6.2.3.2 Kinases 6.2.3.3 Proteases 6.3 Reporter Genes 6.3.1 Reporter genes with intracellular gene products 6.3.2 Reporter genes expressing membrane-associated gene products 6.3.3 Dual/Multiple reporters 6.3.4 Conditional or inducible reporter expression 6.3.5 Using in vivo reporter gene assays for preclinical studies 6.4 Summary References 7. Imaging the Function of Gene Products 7.1 Imaging of Signal Transduction Pathways/Protein–Protein Interaction 7.1.1 Fluorescence resonance transfer 7.1.2 Two-hybrid approach 7.1.3 Protein fragment complementation assay (PCA) 7.1.4 Protein splicing 7.2 Apoptosis 7.2.1 Targeting externalized phosphatidylserine 7.2.2 Targeting of caspases using reporter gene assays 7.2.3 Phenotypic marker of apoptosis 7.3 Imaging Hypoxia Signaling 7.3.1 Hypoxia and the HIF signaling cascade 7.3.2 Hypoxic and non-hypoxic HIF activation — Multimodal imaging strategies 7.4 Metabolic/Physiological Response to Receptor Activation 7.4.1 Hemodynamic changes in central nervous system 7.4.2 Tissue energy metabolism 7.4.2.1 Measurement of glucose utilization 7.4.2.2 Measurement of ATP turnover 7.4.3 Tissue proliferation 7.4.3.1 DNA synthesis 7.4.3.2 Protein synthesis 7.4.3.3 Membrane synthesis 7.4.4 Vascular permeability changes as readout of anti-angiogenic therapy 7.5 Summary References 8. Monitoring Cell Migration 8.1 Introduction 8.2 Inflammatory Cells 8.2.1 Visualization of macrophage infiltration 8.2.1.1 Experimental models of multiple sclerosis 8.2.1.2 Focal cerebral ischemia 8.2.1.3 Atherosclerosis 8.2.1.4 Solid organ transplantation 8.2.1.5 General comments 8.2.2 Lymphocytes 8.3 Stem and Progenitor Cells 8.3.1 Neurogenesis 8.3.2 Stem cells in focal cerebral ischemia 8.3.3 Brain tumors 8.3.4 Myocardial infarction 8.4 Labeled Tumor Cells/Metastasis Formation 8.4.1 Non-invasive imaging of tumor growth, cell migration, metastasis formation 8.4.2 Imaging tumor host interaction, modes of cell migration 8.4.3 Imaging cellular events in cancer immunotherapy 8.5 Summary References 9. Molecular Imaging — Translational Aspects 9.1 Molecular/Personalized Medicine — Molecular Diagnostics 9.2 Molecular Imaging in Target Validation and Drug Discovery 9.3 Clinical Translation: Development of a Diagnostic Imaging Agent 9.3.1 Regulatory and economic aspects 9.3.2 Combining development of therapeutic and diagnostic agents: Theragnostics/companion diagnostic 9.4 Biomarkers 9.4.1 Definition of Biomarkers 9.4.2 Biomarker validation 9.4.3 Individual biomarkers versus biomarker fingerprint 9.4.4 Biomarker for drug development 9.5 Research Challenges in (Molecular) Imaging: Understanding the Nature of the Signals References Appendices A1 Physical Constants (see e.g. A.1) A2 Mathematical Formulae A2.1 Convolution A2.2 Fourier Transformation A2.3 Differential equations A2.4 Solution to coupled linear differential equations using matrix formalism A2.5 Green’s function A3 Natural Amino Acids A4 Nucleotides References Index