دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Katsura Nishiyama, Tsuyoshi Yamaguchi, Toshiyuki Takamuku, Norio Yoshida سری: Physical Chemistry in Action ISBN (شابک) : 9811653941, 9789811653940 ناشر: Springer سال نشر: 2022 تعداد صفحات: 481 [469] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 16 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Molecular Basics of Liquids and Liquid-Based Materials به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مبانی مولکولی مایعات و مواد مبتنی بر مایع نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Contents Part I Overview 1 Overview of Liquids and Liquid-Based Systems Contents 1.1 What Are Liquids? 1.2 Importance of Studies for Solutions and Solvent-Effects 1.3 Properties of Liquids and Solutions: Structure, Dynamics, and Thermodynamics 1.4 Ionic Liquids 1.5 Solvent Effects in Ionic Liquids 1.6 Solvent and Soft Materials References Part II Basic Properties of Liquids: Structure and Dynamics 2 Multiscale Solvation Theory for Nano- and Biomolecules Contents 2.1 Introduction 2.2 Statistical Mechanics Theory of Solvation 2.2.1 3D-RISM Theory 2.2.2 Applications of 3D-RISM Theory for Molecular Recognition in Nano- and Biomolecular Systems 2.3 Electronic Structure Theory in Solution 2.4 Combination with Molecular Simulation 2.5 Summary and Future Perspective References 3 Dynamics of Molecular Liquids:From Water to Ionic Liquids Contents 3.1 Interaction-Site Model Description of Molecular Liquids 3.2 Partial Structure Factor and Partial Intermediate Scattering Function 3.2.1 Definition 3.2.2 Scattering Experiment 3.3 Long-Range Limiting Behavior of Partial Intermediate Scattering Functions and Macroscopic Properties 3.3.1 Low-q Limiting Behavior of Self-Part 3.3.2 Low-q Limiting Behavior of Collective Part 3.3.3 Self-Diffusion Coefficient 3.3.4 Rank-1 Reorientational Relaxation 3.3.5 Dielectric Relaxation and Ionic Conductivity 3.4 Generalized Langevin Equation for Intermediate Scattering Function 3.4.1 GLE at Finite Wavevector 3.4.2 Low-q Limiting Behaviors of Memory Function and Current-Current Correlation Function 3.4.3 GLE in Low-q Limit 3.5 Mode-Coupling Theory for Molecular Liquids Based on the Interaction-Site Model 3.5.1 MCT at Finite Wavevector 3.5.2 MCT Expression of Shear Viscosity 3.6 Dynamics of Liquid Water 3.6.1 Dielectric Relaxation 3.6.2 Dynamics of Compressed and Stretched Water 3.7 Effects of Heterogeneous Structure of Room-Temperature Ionic Liquids on Shear Viscosity 3.7.1 Room-Temperature Ionic Liquids 3.7.2 Perera-Mazighi Model and Its Extension 3.7.3 Shear Viscosity 3.7.4 Indirect Role of Heterogeneous Structure 3.8 Summary References 4 Structure and Dynamics of Liquids Investigated by Quantum Beam: Binary Solution, Solution Under High Pressure, and Confined Solution Contents 4.1 Quantum Beam Scattering Experiment 4.1.1 Introduction 4.1.2 Structure of Liquids 4.1.3 Dynamics of Liquids 4.2 Scattering Experiment Under High Pressure and Temperature 4.2.1 Introduction 4.2.2 Piston-Cylinder Type Cell 4.2.3 Vessel with Windows 4.2.4 Multi-anvil High-Pressure Cell 4.3 Structure and Dynamics of Alcohol–Water Mixture 4.3.1 Introduction 4.3.2 Structure of Tert-Butanol–Water Mixture 4.3.3 Cluster Dynamic of Butoxyethanol–Water Mixture 4.4 Collective Dynamics of Liquids 4.4.1 Introduction 4.4.2 Van Hove Function 4.4.3 High-Frequency Sound Velocity 4.4.4 Generalize Langevin Equation Analysis 4.4.5 Coupling Between Structural Relaxation and Viscosity 4.4.6 Collective Dynamics of Supercritical Water 4.5 High-Pressure Water 4.5.1 Introduction 4.5.2 Water Structure Under GPa Range 4.5.3 Structure of Electrolyte Solution Under GPa Range 4.6 Confined Water 4.6.1 Introduction 4.6.2 Structure of Confined Water 4.6.3 Dynamics of Confined Water 4.6.4 Confined Solution 4.7 Future Perspectives References 5 Molecular Theory of Solutionfor Solvation Thermodynamics Contents 5.1 Introduction 5.2 Combination Between MD Simulation and 3D-RISM Theory 5.2.1 Background 5.2.2 Formalism of MD/3D-RISM Method [24] 5.2.3 Thermodynamic Integration Along the Coupling Parameter Using MD/3D-RISM Simulation [25] 5.2.4 Free Energy Perturbation Along the Coupling Parameter Using MD/3D-RISM Simulation [25] 5.2.5 Thermodynamic Integration Along the Reaction Coordinate Using MD/3D-RISM Simulation [26] 5.2.6 Application of MD/3D-RISM Simulation to 18C6-K+ Complex in Water [25, 26] 5.3 Bridge Correction Toward an Accurate Estimation of the SFE for Molecular Liquids 5.3.1 Background 5.3.2 Improving SFE of Monatomic LJ Solute in Monatomic LJ Solvent: Sigma Enlarging Bridge (SEB) Correction [27, 30, 31] 5.3.3 A Simple Method to Correct the 3D-RISM Theory Using the SEB Function 5.3.4 Hybrid Closure Between the MD Simulation and the OZ Theory [33] 5.3.5 Transferability of the SEB Function for Diatomic LJ Solute Solvated in Monatomic LJ Solvent: 2D-OZ Theory [32, 34, 35] 5.3.6 Transferability of the SEB Function for Diatomic LJ Solute Solvated in Monatomic LJ Solvent: RISM Theory [35] 5.4 Conclusion Appendix: Variational Principles of the HNC, KH, and KGK Closures References 6 An Overview on the Dynamics in Aqueous Mixtures of Lower Alcohols Contents 6.1 Introduction 6.2 Microscopic Dynamics of Fluids 6.2.1 Time Correlation Function Formalism 6.2.2 Hydrogen Bond Dynamics 6.3 Results 6.3.1 Vibrational Dynamics 6.3.2 Rotational Dynamics 6.3.3 Hydrogen Bond Dynamics 6.3.4 Simulation Details 6.4 Conclusion Conflict of Interest References 7 Intermolecular Vibrations in Aprotic Molecular Liquids and Ionic Liquids Contents 7.1 Introduction 7.2 Femtosecond Raman-Induced Kerr Effect Spectroscopy 7.3 Line Shape Analysis of Low-Frequency Kerr Spectra 7.4 General View and Interpretation of Low-Frequency Spectrum in Liquids 7.5 Line Shapes of Low-Frequency Kerr Spectra in Liquids 7.5.1 Aprotic Molecular Liquids 7.5.2 Ionic Liquids 7.6 Relationship Between Low-Frequency Spectrum and Bulk Parameters in Liquids 7.7 Low-Frequency Spectra by THz-TDS and Far-IR 7.8 Toward a Better Understanding of Low-Frequency Spectrum in Liquids: Approach by MD Simulation 7.9 Summary References Part III Ionic Liquids 8 Mixing States of Ionic Liquid-Molecular Liquid Mixed Solvents and Their Effects on Metal Complex Formation Contents 8.1 Introduction 8.2 X-Ray Crystallography 8.3 Stability Constants 8.4 Mixing States of C2mimTFSA and C8mimTFSA with MLs 8.4.1 Acetonitrile 8.4.2 MeOH 8.4.3 DMSO 8.5 Mechanism of Complex Formation 8.6 Conclusions References 9 Theoretical Approach to Chemical Reactions and Photochemical Processes in Ionic Liquid Contents 9.1 Introduction 9.2 Chemical Reactions with RISM–SCF–SEDD Methods 9.2.1 RISM, RISM–SCF–SEDD, and Related Methods 9.2.1.1 RISM Theory 9.2.1.2 Structural Fluctuation in RISM 9.2.1.3 RISM–SCF–SEDD Method 9.2.2 Chemical Reactions in the Ground State 9.2.3 Chemical Reactions in the Excited State 9.2.4 Summary 9.3 Solvatochromic Shifts Using QM/MM–MD 9.3.1 Theoretical Methods 9.3.1.1 Conventional QM/MM Simulations for Excitation Energy Calculations 9.3.1.2 Variational Mean-Field Approximation into QM/MM Free Energy 9.3.1.3 Perturbative QM/Polarizable MM Excitation Energy Calculation 9.3.2 Computational Details 9.3.2.1 Procedures of the Mean-Field QM/Polarizable MM and Perturbative Excitation-Energy Calculations 9.3.2.2 Quantum-Chemical Calculations 9.3.2.3 Molecular Mechanics Modeling and Molecular Dynamics Sampling 9.3.3 Results and Discussion 9.3.3.1 Excitation Energy Calculations 9.3.3.2 Solvation Effects of an IL 9.3.4 Summary 9.4 Conclusions References 10 Local Structure in Mixtures of Ionic Liquid with Molecular Solvent: Vibration Spectroscopy, NMR and Molecular Dynamics Simulation Contents 10.1 Introduction 10.2 Vibration Spectroscopy 10.3 NMR Chemical Shift 10.3.1 Problems of Chemical Shift Referencing 10.3.2 Chemical Shift Difference 10.3.3 1H-NMR Relative Chemical Shift Variations in IL/Solvents Mixtures 10.4 Molecular Dynamics Simulation 10.4.1 Spatial Distribution Functions 10.4.2 Radial Distribution Functions 10.4.2.1 CationAnion Interaction 10.4.2.2 CationSolvent Interaction 10.4.2.3 Anion–Solvent Interaction 10.4.3 Nearest Neighbor Radial Distribution References Part IV Liquid-Based Systems: Biosystems to Soft Materials 11 Amphiphilic, Thermoresponsive Polymers Interacting with Explicit Solvent Contents 11.1 Introduction: Polymer and Solvent 11.2 Solvation of Polymers at Molecular Level 11.3 How the Intramolecular Interactions Affect the Properties of Polymers in Solution 11.4 Block Design of Amphiphilic Copolymers 11.5 Conclusion References 12 A Statistical Mechanics Study of the Adsorption Sites of Alkali Ions in Prussian Blue Contents 12.1 Introduction 12.2 Method of Calculation 12.3 Ions in Bulk Solution 12.4 Adsorption Sites of Alkali Ions in p-PB 12.4.1 Distribution of Water 12.4.2 Distribution of Ions 12.4.3 Explicit Ion and Solvation Structure 12.4.3.1 Solvated Structure of Explicit Li+ and Na+ 12.4.3.2 Solvated Structure of Explicit K+ and Cs+ 12.5 Adsorption Sites of Alkali Ions in d-PB 12.5.1 Distribution of Water 12.5.2 Distribution of Ions 12.5.3 Explicit Ion and Solvation Structure 12.5.3.1 Solvated Structures of Explicit Li+ and Na+ 12.5.3.2 Solvated Structure of Explicit Cs+ 12.5.3.3 Solvated Structure of Explicit K+ 12.6 Conclusion References 13 Effects of Antagonistic Salts on Critical Behavior and Order Formation of Soft Matter Contents 13.1 Introduction 13.2 Effects of Antagonistic Salts on Phase Behavior of Water/Organic Solvent Mixtures 13.3 Charge-Density-Wave Structures Formed in Near-Critical Regions of the Mixtures 13.4 Membrane Structures Formed in the Water-Rich Regions of the Mixtures 13.5 Summary References 14 Chiral Supramolecular Gels for Visual Enantioselective Recognition Using Sol –Gel Transitions Contents 14.1 Introduction 14.2 Chiral Recognition by Enantioselective Gel Collapse 14.2.1 Metallogelators 14.2.2 Organic Gelators 14.3 Chiral Recognition by Enantioselective Gelation 14.4 Conclusion References 15 Organogels and Hydrogels: Functions and Structure Governed by Interactions Between Gelators and Solvents Contents 15.1 Introduction 15.2 Definitions and Classifications of Gels 15.2.1 Definitions 15.2.2 Structures 15.2.3 Importance of Solvent in the Gel 15.2.4 Classification Depending on Dispersion Medium 15.3 Gel Structures and Properties Depending on the Solvent 15.3.1 Chemical and Physical Gels: Definitions 15.3.2 Organic Gelators: From Small to Big Molecules 15.3.3 Synthesis and Characterization of Gels 15.3.4 Properties Depending on Viscoelasticity and Temperature 15.4 Prediction of Gelation Using Hansen Solubility Parameters 15.4.1 General Aspects 15.4.2 Applications 15.5 Summary and Future Perspective References 16 Liquid and Gaseous Fuel Mixing in Combustion: A Detailed View from Chemical Reaction Processes Contents 16.1 Introduction 16.2 Small Length Scales in Reactive Flows 16.3 Wide Time Scale Ranges 16.4 Diffusion Properties of Mixtures Components 16.5 Summary References Part V Future Perspective 17 Future Perspectives of Liquids and Liquid-Based Materials Contents 17.1 Properties of Liquids and Liquid-Based Materials: What and How, Now and Future… 17.2 Liquids and Soft Materials: Specific Characteristics 17.3 Microscopic and Macroscopic Phenomena 17.4 Future Perspectives 17.4.1 Part II: Basic Properties of Liquids: Structure and Dynamics 17.4.2 Part III: Ionic Liquids 17.4.3 Part IV: Liquid-Based Systems: Biosystems to Soft Materials 17.5 Concluding Remarks References Index