ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Molecular Basics of Liquids and Liquid-Based Materials

دانلود کتاب مبانی مولکولی مایعات و مواد مبتنی بر مایع

Molecular Basics of Liquids and Liquid-Based Materials

مشخصات کتاب

Molecular Basics of Liquids and Liquid-Based Materials

ویرایش:  
نویسندگان: , , ,   
سری: Physical Chemistry in Action 
ISBN (شابک) : 9811653941, 9789811653940 
ناشر: Springer 
سال نشر: 2022 
تعداد صفحات: 481
[469] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 16 Mb 

قیمت کتاب (تومان) : 35,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 10


در صورت تبدیل فایل کتاب Molecular Basics of Liquids and Liquid-Based Materials به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مبانی مولکولی مایعات و مواد مبتنی بر مایع نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مبانی مولکولی مایعات و مواد مبتنی بر مایع



توضیحاتی درمورد کتاب به خارجی

This book sheds light on the molecular aspects of liquids and liquid-based materials such as organic or inorganic liquids, ionic liquids, proteins, biomaterials, and soft materials including gels. The reader discovers how the molecular basics of such systems are connected with their properties, dynamics, and functions. Once the use and application of liquids and liquid-based materials are understood, the book becomes a source of the latest, detailed knowledge of their structures, dynamics, and functions emerging from molecularity. The systems discussed in the book have structural dimensions varying from nanometers to millimeters, thus the precise estimation of structures and dynamics from experimental, theoretical, and simulation methods is of crucial importance. Outlines of the practical knowledge needed in research and development are helpfully included in the book.


فهرست مطالب

Preface
Contents
Part I Overview
	1 Overview of Liquids and Liquid-Based Systems
		Contents
		1.1 What Are Liquids?
		1.2 Importance of Studies for Solutions and Solvent-Effects
		1.3 Properties of Liquids and Solutions: Structure, Dynamics, and Thermodynamics
		1.4 Ionic Liquids
		1.5 Solvent Effects in Ionic Liquids
		1.6 Solvent and Soft Materials
		References
Part II Basic Properties of Liquids: Structure and Dynamics
	2 Multiscale Solvation Theory for Nano- and Biomolecules
		Contents
		2.1 Introduction
		2.2 Statistical Mechanics Theory of Solvation
			2.2.1 3D-RISM Theory
			2.2.2 Applications of 3D-RISM Theory for Molecular Recognition in Nano- and Biomolecular Systems
		2.3 Electronic Structure Theory in Solution
		2.4 Combination with Molecular Simulation
		2.5 Summary and Future Perspective
		References
	3 Dynamics of Molecular Liquids:From Water to Ionic Liquids
		Contents
		3.1 Interaction-Site Model Description of Molecular Liquids
		3.2 Partial Structure Factor and Partial Intermediate Scattering Function
			3.2.1 Definition
			3.2.2 Scattering Experiment
		3.3 Long-Range Limiting Behavior of Partial Intermediate Scattering Functions and Macroscopic Properties
			3.3.1 Low-q Limiting Behavior of Self-Part
			3.3.2 Low-q Limiting Behavior of Collective Part
			3.3.3 Self-Diffusion Coefficient
			3.3.4 Rank-1 Reorientational Relaxation
			3.3.5 Dielectric Relaxation and Ionic Conductivity
		3.4 Generalized Langevin Equation for Intermediate Scattering Function
			3.4.1 GLE at Finite Wavevector
			3.4.2 Low-q Limiting Behaviors of Memory Function and Current-Current Correlation Function
			3.4.3 GLE in Low-q Limit
		3.5 Mode-Coupling Theory for Molecular Liquids Based on the Interaction-Site Model
			3.5.1 MCT at Finite Wavevector
			3.5.2 MCT Expression of Shear Viscosity
		3.6 Dynamics of Liquid Water
			3.6.1 Dielectric Relaxation
			3.6.2 Dynamics of Compressed and Stretched Water
		3.7 Effects of Heterogeneous Structure of Room-Temperature Ionic Liquids on Shear Viscosity
			3.7.1 Room-Temperature Ionic Liquids
			3.7.2 Perera-Mazighi Model and Its Extension
			3.7.3 Shear Viscosity
			3.7.4 Indirect Role of Heterogeneous Structure
		3.8 Summary
		References
	4 Structure and Dynamics of Liquids Investigated by Quantum Beam: Binary Solution, Solution Under High Pressure, and Confined Solution
		Contents
		4.1 Quantum Beam Scattering Experiment
			4.1.1 Introduction
			4.1.2 Structure of Liquids
			4.1.3 Dynamics of Liquids
		4.2 Scattering Experiment Under High Pressure and Temperature
			4.2.1 Introduction
			4.2.2 Piston-Cylinder Type Cell
			4.2.3 Vessel with Windows
			4.2.4 Multi-anvil High-Pressure Cell
		4.3 Structure and Dynamics of Alcohol–Water Mixture
			4.3.1 Introduction
			4.3.2 Structure of Tert-Butanol–Water Mixture
			4.3.3 Cluster Dynamic of Butoxyethanol–Water Mixture
		4.4 Collective Dynamics of Liquids
			4.4.1 Introduction
			4.4.2 Van Hove Function
			4.4.3 High-Frequency Sound Velocity
			4.4.4 Generalize Langevin Equation Analysis
			4.4.5 Coupling Between Structural Relaxation and Viscosity
			4.4.6 Collective Dynamics of Supercritical Water
		4.5 High-Pressure Water
			4.5.1 Introduction
			4.5.2 Water Structure Under GPa Range
			4.5.3 Structure of Electrolyte Solution Under GPa Range
		4.6 Confined Water
			4.6.1 Introduction
			4.6.2 Structure of Confined Water
			4.6.3 Dynamics of Confined Water
			4.6.4 Confined Solution
		4.7 Future Perspectives
		References
	5 Molecular Theory of Solutionfor Solvation Thermodynamics
		Contents
		5.1 Introduction
		5.2 Combination Between MD Simulation and 3D-RISM Theory
			5.2.1 Background
			5.2.2 Formalism of MD/3D-RISM Method [24]
			5.2.3 Thermodynamic Integration Along the Coupling Parameter Using MD/3D-RISM Simulation [25]
			5.2.4 Free Energy Perturbation Along the Coupling Parameter Using MD/3D-RISM Simulation [25]
			5.2.5 Thermodynamic Integration Along the Reaction Coordinate Using MD/3D-RISM Simulation [26]
			5.2.6 Application of MD/3D-RISM Simulation to 18C6-K+ Complex in Water [25, 26]
		5.3 Bridge Correction Toward an Accurate Estimation of the SFE for Molecular Liquids
			5.3.1 Background
			5.3.2 Improving SFE of Monatomic LJ Solute in Monatomic LJ Solvent: Sigma Enlarging Bridge (SEB) Correction [27, 30, 31]
			5.3.3 A Simple Method to Correct the 3D-RISM Theory Using the SEB Function
			5.3.4 Hybrid Closure Between the MD Simulation and the OZ Theory [33]
			5.3.5 Transferability of the SEB Function for Diatomic LJ Solute Solvated in Monatomic LJ Solvent: 2D-OZ Theory [32, 34, 35]
			5.3.6 Transferability of the SEB Function for Diatomic LJ Solute Solvated in Monatomic LJ Solvent: RISM Theory [35]
		5.4 Conclusion
		Appendix: Variational Principles of the HNC, KH, and KGK Closures
		References
	6 An Overview on the Dynamics in Aqueous Mixtures of Lower Alcohols
		Contents
		6.1 Introduction
		6.2 Microscopic Dynamics of Fluids
			6.2.1 Time Correlation Function Formalism
			6.2.2 Hydrogen Bond Dynamics
		6.3 Results
			6.3.1 Vibrational Dynamics
			6.3.2 Rotational Dynamics
			6.3.3 Hydrogen Bond Dynamics
			6.3.4 Simulation Details
		6.4 Conclusion
		Conflict of Interest
		References
	7 Intermolecular Vibrations in Aprotic Molecular Liquids and Ionic Liquids
		Contents
		7.1 Introduction
		7.2 Femtosecond Raman-Induced Kerr Effect Spectroscopy
		7.3 Line Shape Analysis of Low-Frequency Kerr Spectra
		7.4 General View and Interpretation of Low-Frequency Spectrum in Liquids
		7.5 Line Shapes of Low-Frequency Kerr Spectra in Liquids
			7.5.1 Aprotic Molecular Liquids
			7.5.2 Ionic Liquids
		7.6 Relationship Between Low-Frequency Spectrum and Bulk Parameters in Liquids
		7.7 Low-Frequency Spectra by THz-TDS and Far-IR
		7.8 Toward a Better Understanding of Low-Frequency Spectrum in Liquids: Approach by MD Simulation
		7.9 Summary
		References
Part III Ionic Liquids
	8 Mixing States of Ionic Liquid-Molecular Liquid Mixed Solvents and Their Effects on Metal Complex Formation
		Contents
		8.1 Introduction
		8.2 X-Ray Crystallography
		8.3 Stability Constants
		8.4 Mixing States of C2mimTFSA and C8mimTFSA with MLs
			8.4.1 Acetonitrile
			8.4.2 MeOH
			8.4.3 DMSO
		8.5 Mechanism of Complex Formation
		8.6 Conclusions
		References
	9 Theoretical Approach to Chemical Reactions and Photochemical Processes in Ionic Liquid
		Contents
		9.1 Introduction
		9.2 Chemical Reactions with RISM–SCF–SEDD Methods
			9.2.1 RISM, RISM–SCF–SEDD, and Related Methods
				9.2.1.1 RISM Theory
				9.2.1.2 Structural Fluctuation in RISM
				9.2.1.3 RISM–SCF–SEDD Method
			9.2.2 Chemical Reactions in the Ground State
			9.2.3 Chemical Reactions in the Excited State
			9.2.4 Summary
		9.3 Solvatochromic Shifts Using QM/MM–MD
			9.3.1 Theoretical Methods
				9.3.1.1 Conventional QM/MM Simulations for Excitation Energy Calculations
				9.3.1.2 Variational Mean-Field Approximation into QM/MM Free Energy
				9.3.1.3 Perturbative QM/Polarizable MM Excitation Energy Calculation
			9.3.2 Computational Details
				9.3.2.1 Procedures of the Mean-Field QM/Polarizable MM and Perturbative Excitation-Energy Calculations
				9.3.2.2 Quantum-Chemical Calculations
				9.3.2.3 Molecular Mechanics Modeling and Molecular Dynamics Sampling
			9.3.3 Results and Discussion
				9.3.3.1 Excitation Energy Calculations
				9.3.3.2 Solvation Effects of an IL
			9.3.4 Summary
		9.4 Conclusions
		References
	10 Local Structure in Mixtures of Ionic Liquid with Molecular Solvent: Vibration Spectroscopy, NMR and Molecular Dynamics Simulation
		Contents
		10.1 Introduction
		10.2 Vibration Spectroscopy
		10.3 NMR Chemical Shift
			10.3.1 Problems of Chemical Shift Referencing
			10.3.2 Chemical Shift Difference
			10.3.3 1H-NMR Relative Chemical Shift Variations in IL/Solvents Mixtures
		10.4 Molecular Dynamics Simulation
			10.4.1 Spatial Distribution Functions
			10.4.2 Radial Distribution Functions
				10.4.2.1 CationAnion Interaction
				10.4.2.2 CationSolvent Interaction
				10.4.2.3 Anion–Solvent Interaction
			10.4.3 Nearest Neighbor Radial Distribution
		References
Part IV Liquid-Based Systems: Biosystems to Soft Materials
	11 Amphiphilic, Thermoresponsive Polymers Interacting with Explicit Solvent
		Contents
		11.1 Introduction: Polymer and Solvent
		11.2 Solvation of Polymers at Molecular Level
		11.3 How the Intramolecular Interactions Affect the Properties of Polymers in Solution
		11.4 Block Design of Amphiphilic Copolymers
		11.5 Conclusion
		References
	12 A Statistical Mechanics Study of the Adsorption Sites of Alkali Ions in Prussian Blue
		Contents
		12.1 Introduction
		12.2 Method of Calculation
		12.3 Ions in Bulk Solution
		12.4 Adsorption Sites of Alkali Ions in p-PB
			12.4.1 Distribution of Water
			12.4.2 Distribution of Ions
			12.4.3 Explicit Ion and Solvation Structure
				12.4.3.1 Solvated Structure of Explicit Li+ and Na+
				12.4.3.2 Solvated Structure of Explicit K+ and Cs+
		12.5 Adsorption Sites of Alkali Ions in d-PB
			12.5.1 Distribution of Water
			12.5.2 Distribution of Ions
			12.5.3 Explicit Ion and Solvation Structure
				12.5.3.1 Solvated Structures of Explicit Li+ and Na+
				12.5.3.2 Solvated Structure of Explicit Cs+
				12.5.3.3 Solvated Structure of Explicit K+
		12.6 Conclusion
		References
	13 Effects of Antagonistic Salts on Critical Behavior and Order Formation of Soft Matter
		Contents
		13.1 Introduction
		13.2 Effects of Antagonistic Salts on Phase Behavior of Water/Organic Solvent Mixtures
		13.3 Charge-Density-Wave Structures Formed in Near-Critical Regions of the Mixtures
		13.4 Membrane Structures Formed in the Water-Rich Regions of the Mixtures
		13.5 Summary
		References
	14 Chiral Supramolecular Gels for Visual Enantioselective Recognition Using Sol –Gel Transitions
		Contents
		14.1 Introduction
		14.2 Chiral Recognition by Enantioselective Gel Collapse
			14.2.1 Metallogelators
			14.2.2 Organic Gelators
		14.3 Chiral Recognition by Enantioselective Gelation
		14.4 Conclusion
		References
	15 Organogels and Hydrogels: Functions and Structure Governed by Interactions Between Gelators and Solvents
		Contents
		15.1 Introduction
		15.2 Definitions and Classifications of Gels
			15.2.1 Definitions
			15.2.2 Structures
			15.2.3 Importance of Solvent in the Gel
			15.2.4 Classification Depending on Dispersion Medium
		15.3 Gel Structures and Properties Depending on the Solvent
			15.3.1 Chemical and Physical Gels: Definitions
			15.3.2 Organic Gelators: From Small to Big Molecules
			15.3.3 Synthesis and Characterization of Gels
			15.3.4 Properties Depending on Viscoelasticity and Temperature
		15.4 Prediction of Gelation Using Hansen Solubility Parameters
			15.4.1 General Aspects
			15.4.2 Applications
		15.5 Summary and Future Perspective
		References
	16 Liquid and Gaseous Fuel Mixing in Combustion: A Detailed View from Chemical Reaction Processes
		Contents
		16.1 Introduction
		16.2 Small Length Scales in Reactive Flows
		16.3 Wide Time Scale Ranges
		16.4 Diffusion Properties of Mixtures Components
		16.5 Summary
		References
Part V Future Perspective
	17 Future Perspectives of Liquids and Liquid-Based Materials
		Contents
		17.1 Properties of Liquids and Liquid-Based Materials: What and How, Now and Future…
		17.2 Liquids and Soft Materials: Specific Characteristics
		17.3 Microscopic and Macroscopic Phenomena
		17.4 Future Perspectives
			17.4.1 Part II: Basic Properties of Liquids: Structure and Dynamics
			17.4.2 Part III: Ionic Liquids
			17.4.3 Part IV: Liquid-Based Systems: Biosystems to Soft Materials
		17.5 Concluding Remarks
		References
Index




نظرات کاربران