دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: فناوری نانو ویرایش: نویسندگان: Thimmaiah Govindaraju. Katsuhiko Ariga سری: Nanostructure Science and Technology ISBN (شابک) : 9811641889, 9789811641886 ناشر: Springer سال نشر: 2021 تعداد صفحات: 545 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 22 مگابایت
در صورت تبدیل فایل کتاب Molecular Architectonics and Nanoarchitectonics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب معماری مولکولی و نانومعماری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Introduction: Molecular Architectonics to Nanoarchitectonics Contents Part I: Molecular Architectonics and Nanoarchitectonics Chapter 1: Molecular Architectonics 1.1 Introduction 1.2 Self-Cleaning Materials 1.3 Biomimetic Catalysis 1.4 Organic Electronics 1.5 Chirality, Homochirality, and Protein Folding 1.6 Biosensors 1.7 Drug Delivery and Tissue Engineering 1.8 Conclusion and Future Prospects References Chapter 2: Nanoarchitectonics 2.1 History of Nanoarchitectonics 2.2 Essence of Nanoarchitectonics 2.3 Example of Nanoarchitectonics 2.4 Short Perspective References Part II: Architectonics of Functional Molecules Chapter 3: Topological Supramolecular Polymer 3.1 Sixty Years of History of Catenanes 3.2 Supramolecular Polymer with Intrinsic Curvature 3.3 Nanolympiadane 3.4 Mechanism of Nano-Catenane Formation 3.5 Nano-Polycatenanes 3.6 Conclusion References Chapter 4: Molecular Architectonics Guide to the Fabrication of Self-Cleaning Materials 4.1 Introduction 4.2 Self-Cleaning Surfaces and Relevant Parameters 4.3 Theories of Superhydrophobic Property-Based Self-Cleaning Phenomena (Lotus Leaf Vs Rose Petal) 4.4 Molecular Architectonics-Guided Self-Cleaning Materials 4.5 Fabrication Superhydrophobic Self-Cleaning Surfaces by Molecular Architectonics 4.6 Conclusions and Outlook References Chapter 5: Functional Discotic Liquid Crystals Through Molecular Self-Assembly: Toward Efficient Charge Transport Systems 5.1 Introduction 5.2 Charge Transport in DLCs 5.2.1 Charge Transport Studies in DLC Materials Based on Various Discotic Cores 5.2.1.1 Phthalocyanine 5.2.1.2 Porphyrin 5.2.1.3 Triphenylene 5.2.1.4 Coronene Family 5.2.1.5 Perylene 5.2.1.6 Pyrene 5.2.1.7 Truxene Family 5.2.1.8 Thiophene 5.2.1.9 Triphenylborane 5.3 Summary and Future Perspective References Part III: Architectonics of Peptides Chapter 6: Dopamine-Based Materials: Recent Advances in Synthesis Methods and Applications 6.1 Introduction 6.2 Polydopamine-Based Materials 6.2.1 Polydopamine Nanoparticles 6.2.2 Core/Shell Nanoparticles 6.2.3 Microcapsules 6.2.4 Films 6.2.5 Hydrogels 6.3 Dopamine-Based Materials Prepared via the Co-assembly Strategy 6.3.1 Polydopamine-Assisted Co-deposition 6.3.2 Novel Dopamine-Based Nanostructures 6.4 Applications of Dopamine-Based Materials 6.4.1 Cancer Theranostics 6.4.2 Bioimaging 6.4.3 Self-Adhesive Bioelectronics 6.4.4 Removal of Heavy Metal Ions 6.5 Summary and Outlook References Chapter 7: Peptide-Based Nanoarchitectonics: Self-Assembly and Biological Applications 7.1 Introduction 7.2 Self-Assembly Mechanisms 7.3 Tumor Imaging and Phototherapeutic Biomaterials 7.4 Biomimetic Photosynthetic Architectures 7.5 Conclusions and Perspective References Chapter 8: Peptide Cross-β Nanoarchitectures: Characterizing Self-Assembly Mechanisms, Structure, and Physicochemical Properti... 8.1 Introduction 8.2 Mechanisms of Cross-β Self-Assembly 8.2.1 General Mechanistic Considerations 8.2.2 Fluorescent Reporters of Cross-β Assembly, Including ThT 8.2.3 Turbidity 8.2.4 Infrared Spectroscopy 8.2.5 Circular Dichroism (CD) Spectroscopy 8.2.6 Dynamic Light Scattering (DLS) 8.2.7 Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), and High-Speed AFM (HS-AFM) 8.2.8 Sedimentation Analysis 8.2.9 Electrospray Ionization-Ion Mobility-Mass Spectrometry (ESI-IMS-MS) 8.2.10 Quartz Crystal Microbalance (QCM) Analysis 8.2.11 Surface Plasmon Resonance (SPR) 8.2.12 Isothermal Titration Calorimetry (ITC) and Differential Scanning Calorimetry (DSC) 8.2.13 In Silico Simulations 8.3 Structural Characterization of Cross-β Nanomaterials 8.3.1 Introduction 8.3.2 Circular Dichroism 8.3.3 Vibrational Spectroscopy 8.3.3.1 Infrared (IR) Spectroscopy 8.3.3.2 Raman Spectroscopy 8.4 Solid-State NMR (SSNMR) 8.5 Diffraction Techniques 8.6 Electron Microscopy 8.7 Emergent Physicochemical Properties of Cross-β Nanomaterials 8.8 Conclusion References Chapter 9: Function-Inspired Design of Molecular Hydrogels: Paradigm-Shifting Biomaterials for Biomedical Applications 9.1 Introduction 9.2 Molecular Hydrogels from Self-Assembling Peptides (SAPs) 9.2.1 Self-Healing SAPs for Cardiovascular Disease 9.2.2 SAP-Based Molecular Hydrogels in Accelerated Wound Healing 9.2.3 Hydrogels to Regulate Immune Response Toward the Implant 9.3 Prodrug-Based Self-Assembled Hydrogels 9.4 Stimuli-Guided Self-Assembly and Disassembly (Disease-Responsive Disassembly) of Small Molecules 9.4.1 Enzyme-Responsive Hydrogels for Delivery of Immunosuppressants in Vascularized Composite Allotransplantation (VCA) and A... 9.4.2 Ascorbyl Palmitate (AP or AP-16) Hydrogel Fibers for Charge-Dependent Localization, Adherence, and Enzyme-Responsive Dru... 9.4.3 Stimuli-Responsive Molecular Hydrogels for Cancer Immunotherapy 9.5 In Situ Forming Gels 9.5.1 Other Applications: LMWHs for Gene Therapy and Delivery of NSAIDs 9.6 Tissue-Engineering Scaffolds for Regenerative Medicine 9.7 Future Perspectives 9.8 Conclusions References Chapter 10: Smart Peptide Assembly Architectures to Mimic Biology´s Adaptive Properties and Applications 10.1 Introduction 10.2 Different Nanoarchitectonics 10.2.1 Micelles 10.2.2 Vesicles 10.2.3 Fibers 10.2.4 Tubes 10.2.5 Tapes and Ribbons 10.2.6 Nanospheres 10.3 Self-Assembly Amino Acids to Nanoarchitectonics 10.4 Peptide Self-Assembly to Nanoarchitectonics 10.4.1 Supramolecular Helices 10.4.2 Single-Stranded Supramolecular Helix 10.4.3 Double-Stranded Supramolecular Helix 10.4.4 Triple-Stranded Supramolecular Helix 10.4.5 Quadruple-Stranded Supramolecular Helix 10.4.6 Herringbone Helix 10.4.6.1 Supramolecular β-Sheets 10.4.6.2 β-Sheet from Cyclic Peptide Foldamers 10.4.6.3 β-Sheet from Acyclic Peptide Foldamers 10.4.7 Factors on Self-Assembly of Folded Peptides 10.4.8 Effect of Amino Acid Sequence 10.4.9 Effect of Concentration 10.4.10 Effect of Sonication 10.4.11 Effect of Spacer 10.5 Effect of pH 10.6 Effect of Solvent 10.7 Effect of Other Stimulus 10.8 Conclusion References Part IV: Architectonics of Nucleic Acids Chapter 11: Bio-inspired Functional DNA Architectures 11.1 Introduction 11.2 Modification Strategies 11.3 DNA Duplexes with External Modifications 11.4 DNA Duplexes with Internal Modifications 11.5 Higher-Order DNA Architectures 11.6 Conclusions and Outlook References Chapter 12: Functional Molecule-Templated DNA Molecular Architectonics 12.1 Introduction 12.1.1 SFM Toolbox 12.1.2 Templated DNA Architectures 12.1.2.1 SFM-Templated DNA Architectonics Driven by Canonical Hydrogen Bonding Interactions 12.1.2.2 SFM-Templated DNA Architectonics Driven by Noncanonical Hydrogen Bonding Interactions 12.1.2.3 SFM-Templated DNA Architectonics Driven by Ionic Interactions 12.1.2.4 SFM-Templated DNA Architectonics Driven by Metal-Base Pair Interactions 12.2 Nanoparticle-Templated DNA Architectonics 12.3 Biomolecule-Templated DNA Architectonics 12.3.1 Threading Intercalator-Guided DNA Architectonics 12.4 Conclusions and Future Perspectives References Chapter 13: Architectures of Nucleolipid Assemblies and Their Applications 13.1 Introduction 13.2 Architectonic Landscape of Nucleolipids 13.2.1 Design and Tuning of Nucleolipid Assemblies 13.2.2 Non-ionic Nucleolipids 13.2.3 Ionic Nucleolipids 13.2.4 Glycosyl-Based Nucleolipids 13.3 Applications of Nucleolipid Assemblies 13.3.1 Nucleolipid Delivery Vehicles, Injectable Gels and Tissue Engineering Scaffolds 13.3.2 Fluorescent Nucleolipids and Sensors 13.3.3 Nucleolipid Assemblies for Environmental Remediation 13.4 Conclusions and Outlook References Chapter 14: Nucleobase- and DNA-Functionalized Hydrogels and Their Applications 14.1 Introduction 14.2 G-Quadruplex Hydrogel 14.2.1 Brief History of G-Quadruplex Hydrogel 14.2.2 G-Quadruplex Hydrogels from Binary Systems 14.2.3 Boronate Ester Functionalized Dynamic G-Quadruplex Hydrogels and Their Applications 14.3 Oligonucleotide-Based Hydrogel 14.3.1 Conjugated Oligonucleotides 14.3.2 Peptide-Oligonucleotide Conjugates (POCs) 14.3.3 Lipid-Oligonucleotide Conjugates 14.3.4 Carbohydrate-Oligonucleotide Conjugates 14.4 Conclusion References Chapter 15: RNA Nanoarchitectures and Their Applications 15.1 Introduction 15.2 RNA vs DNA: Structural Differences and Its Implications on Stability 15.2.1 Key Structural Differences Between RNA and DNA 15.2.2 Structural Implications on RNA Stability 15.3 Aspects of RNA Nanoarchitecture 15.3.1 RNA Nanotechnology in Comparison with DNA Nanotechnology 15.3.2 Building Blocks of RNA Nanoarchitecture: RNA Motifs 15.3.3 Strategies for Building RNA Nanoarchitecture 15.4 Applications of RNA Nanoarchitecture 15.4.1 RNA Nanoarchitectures in Drug Delivery 15.4.2 In Vivo Assembly of RNA Nanoarchitecture 15.4.3 RNA Nanoarchitecture in Detection and Imaging: Light-Up Aptamers 15.4.4 RNA Nanoarchitecture in Gene Editing: CRISPR-Cas System 15.4.5 RNA Computing 15.5 Future Prospective References Part V: Architectonics of Complex Systems and Advanced Objects Chapter 16: Covalent Organic Frameworks as Tunable Supports for HER, OER, and ORR Catalysts: A New Addition to Heterogeneous E... 16.1 Introduction to Covalent Organic Framework [COF] 16.2 Chemistry of COF Formation 16.3 Selected Notable Chemistries for COF-MOF Construction 16.4 Self-Exfoliation and Functionalizing Exfoliation Agent [FEA] (Fig. 16.12) 16.5 Stability in Imine-COFs Through Chemical Design 16.6 Imparting Nanoparticle Binding Units and Conductivity into COF 16.7 Concepts in HER 16.8 Concepts in Oxygen Evolution Reaction 16.9 Acidic and Alkaline Polymer Catalyst for OER 16.10 Analyzing OER Mechanism: A Thermodynamic Perspective 16.11 OER Mechanism Based on Kinetic Measurements: Challenges 16.12 Concepts in ORR: Different Pathways with Varying Thermodynamics 16.13 COF as Active Porous Support to Improve Catalyst Activity 16.14 Visible Light HER by Sulfone-Functionalized COF [169] 16.15 Electrocatalysis Using COF with Transition Metals 16.16 CFSE a Descriptor to Predict the Catalytic Activity of COF [204] 16.17 OER by Semi-crystalline Highly Conjugated Phenazine COFs 16.18 Modeling the Potential of a COF as a Bifunctional Catalyst 16.19 Conclusion References Chapter 17: Ligand-Functionalized Nanostructures and Their Biomedical Applications 17.1 Introduction 17.2 Why Ligand Functionalization Is Important for Biomedical Application? 17.3 Coating Chemistry for Nanoparticle 17.4 Bioconjugation Chemistry for Ligand Functionalization of Nanoparticle 17.5 Biomedical Applications of Ligand-Functionalized Nanostructures [1-25] 17.6 Challenges and Future Aspect of Ligand-Functionalized Nanostructure for Biomedical Applications References Chapter 18: Biomimetic Composite Materials and Their Biological Applications 18.1 Overview of Drug Delivery with Particulate Vehicles 18.2 Particles Mimicking Mammalian Cell Architecture and Morphology 18.3 Composites Mimicking Bacterial Cells 18.4 Virus-Mimicking Synthetic Delivery Systems 18.5 Drug Delivery Vehicles Imitating Antibody-Antigen Interactions 18.6 Biomimetic Materials for Tissue Engineering 18.7 Conclusion References Chapter 19: Combining Polymers, Nanomaterials, and Biomolecules: Nanostructured Films with Functional Properties and Applicati... 19.1 Introduction 19.2 Polymer Architectures with 1D, 2D, and 3D Dimensions 19.3 Polymer 2D Nanoarchitectures from Mono- and Multilayer Films 19.4 Biointerfaces: Applications as Mimetic Models and in Biosensing 19.4.1 Langmuir Monolayers and Langmuir-Blodgett Films as Mimetic Models 19.4.2 Polymers and Nanostructured Films for Biosensing 19.5 Final Remarks References Chapter 20: Responsive Polymeric Architectures and Their Biomaterial Applications 20.1 Nano- and Bio-materials 20.2 ``Smart´´ Polymers 20.3 ``Smart´´ Diagnostic Tools 20.3.1 Early Disease Diagnosis 20.3.2 Diagnosis in the Developing World 20.3.3 ``Smart´´ Microfluidic Flow Control 20.4 ``Smart´´ Biological Assays 20.4.1 Biological Affinity Measurement 20.4.2 Bio-separations 20.5 Conclusions References Index