ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Molecular Architectonics and Nanoarchitectonics

دانلود کتاب معماری مولکولی و نانومعماری

Molecular Architectonics and Nanoarchitectonics

مشخصات کتاب

Molecular Architectonics and Nanoarchitectonics

دسته بندی: فناوری نانو
ویرایش:  
نویسندگان:   
سری: Nanostructure Science and Technology 
ISBN (شابک) : 9811641889, 9789811641886 
ناشر: Springer 
سال نشر: 2021 
تعداد صفحات: 545 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 22 مگابایت 

قیمت کتاب (تومان) : 48,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 23


در صورت تبدیل فایل کتاب Molecular Architectonics and Nanoarchitectonics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب معماری مولکولی و نانومعماری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب معماری مولکولی و نانومعماری


این کتاب مجموعه نهایی فعالیت های تحقیقاتی اخیر در زمینه معماری مولکولی و نانومعماری توسط نویسندگان متخصص در سراسر جهان است. این کتاب راه‌های جدیدی را برای ایجاد مواد کاربردی در سطح نانو با استفاده از مفاهیم معماری مولکولی و نانومعماری پیشنهاد می‌کند، که انتظار می‌رود رویکردهای نسل بعدی فراتر از فناوری نانو معمولی باشند. تمامی محتویات بر اساس انواع مواد، مواد آلی، بیومواد و نانومواد طبقه بندی می شوند. به همین دلیل، افراد غیرمتخصص اعم از دانشجویان کارشناسی ارشد و کارشناسی می توانند از هر نقطه ای که مایلند شروع به خواندن کتاب کنند. گرایش های پیشرفته در نانوتکنولوژی و علوم مواد به راحتی در مطالب کتاب قابل مشاهده است که هم برای دانشجویان و هم برای دانشمندان مواد تجربی بسیار مفید است.


توضیحاتی درمورد کتاب به خارجی

This book is the ultimate assembly of recent research activities on molecular architectonics and nanoarchitectonics by authors who are worldwide experts. The book proposes new ways of creating functional materials at the nano level using the concepts of molecular architectonics and nanoarchitectonics, which are expected to be the next-generation approaches beyond conventional nanotechnology. All the contents are categorized by types of materials, organic materials, biomaterials, and nanomaterials. For that reason, non-specialists including graduate and undergraduate students can start reading the book from any points they would like. Cutting-edge trends in nanotechnology and material sciences are easily visible in the contents of the book, which is highly useful for both students and experimental materials scientists. 



فهرست مطالب

Preface
	Introduction: Molecular Architectonics to Nanoarchitectonics
Contents
Part I: Molecular Architectonics and Nanoarchitectonics
	Chapter 1: Molecular Architectonics
		1.1 Introduction
		1.2 Self-Cleaning Materials
		1.3 Biomimetic Catalysis
		1.4 Organic Electronics
		1.5 Chirality, Homochirality, and Protein Folding
		1.6 Biosensors
		1.7 Drug Delivery and Tissue Engineering
		1.8 Conclusion and Future Prospects
		References
	Chapter 2: Nanoarchitectonics
		2.1 History of Nanoarchitectonics
		2.2 Essence of Nanoarchitectonics
		2.3 Example of Nanoarchitectonics
		2.4 Short Perspective
		References
Part II: Architectonics of Functional Molecules
	Chapter 3: Topological Supramolecular Polymer
		3.1 Sixty Years of History of Catenanes
		3.2 Supramolecular Polymer with Intrinsic Curvature
		3.3 Nanolympiadane
		3.4 Mechanism of Nano-Catenane Formation
		3.5 Nano-Polycatenanes
		3.6 Conclusion
		References
	Chapter 4: Molecular Architectonics Guide to the Fabrication of Self-Cleaning Materials
		4.1 Introduction
		4.2 Self-Cleaning Surfaces and Relevant Parameters
		4.3 Theories of Superhydrophobic Property-Based Self-Cleaning Phenomena (Lotus Leaf Vs Rose Petal)
		4.4 Molecular Architectonics-Guided Self-Cleaning Materials
		4.5 Fabrication Superhydrophobic Self-Cleaning Surfaces by Molecular Architectonics
		4.6 Conclusions and Outlook
		References
	Chapter 5: Functional Discotic Liquid Crystals Through Molecular Self-Assembly: Toward Efficient Charge Transport Systems
		5.1 Introduction
		5.2 Charge Transport in DLCs
			5.2.1 Charge Transport Studies in DLC Materials Based on Various Discotic Cores
				5.2.1.1 Phthalocyanine
				5.2.1.2 Porphyrin
				5.2.1.3 Triphenylene
				5.2.1.4 Coronene Family
				5.2.1.5 Perylene
				5.2.1.6 Pyrene
				5.2.1.7 Truxene Family
				5.2.1.8 Thiophene
				5.2.1.9 Triphenylborane
		5.3 Summary and Future Perspective
		References
Part III: Architectonics of Peptides
	Chapter 6: Dopamine-Based Materials: Recent Advances in Synthesis Methods and Applications
		6.1 Introduction
		6.2 Polydopamine-Based Materials
			6.2.1 Polydopamine Nanoparticles
			6.2.2 Core/Shell Nanoparticles
			6.2.3 Microcapsules
			6.2.4 Films
			6.2.5 Hydrogels
		6.3 Dopamine-Based Materials Prepared via the Co-assembly Strategy
			6.3.1 Polydopamine-Assisted Co-deposition
			6.3.2 Novel Dopamine-Based Nanostructures
		6.4 Applications of Dopamine-Based Materials
			6.4.1 Cancer Theranostics
			6.4.2 Bioimaging
			6.4.3 Self-Adhesive Bioelectronics
			6.4.4 Removal of Heavy Metal Ions
		6.5 Summary and Outlook
		References
	Chapter 7: Peptide-Based Nanoarchitectonics: Self-Assembly and Biological Applications
		7.1 Introduction
		7.2 Self-Assembly Mechanisms
		7.3 Tumor Imaging and Phototherapeutic Biomaterials
		7.4 Biomimetic Photosynthetic Architectures
		7.5 Conclusions and Perspective
		References
	Chapter 8: Peptide Cross-β Nanoarchitectures: Characterizing Self-Assembly Mechanisms, Structure, and Physicochemical Properti...
		8.1 Introduction
		8.2 Mechanisms of Cross-β Self-Assembly
			8.2.1 General Mechanistic Considerations
			8.2.2 Fluorescent Reporters of Cross-β Assembly, Including ThT
			8.2.3 Turbidity
			8.2.4 Infrared Spectroscopy
			8.2.5 Circular Dichroism (CD) Spectroscopy
			8.2.6 Dynamic Light Scattering (DLS)
			8.2.7 Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), and High-Speed AFM (HS-AFM)
			8.2.8 Sedimentation Analysis
			8.2.9 Electrospray Ionization-Ion Mobility-Mass Spectrometry (ESI-IMS-MS)
			8.2.10 Quartz Crystal Microbalance (QCM) Analysis
			8.2.11 Surface Plasmon Resonance (SPR)
			8.2.12 Isothermal Titration Calorimetry (ITC) and Differential Scanning Calorimetry (DSC)
			8.2.13 In Silico Simulations
		8.3 Structural Characterization of Cross-β Nanomaterials
			8.3.1 Introduction
			8.3.2 Circular Dichroism
			8.3.3 Vibrational Spectroscopy
				8.3.3.1 Infrared (IR) Spectroscopy
				8.3.3.2 Raman Spectroscopy
		8.4 Solid-State NMR (SSNMR)
		8.5 Diffraction Techniques
		8.6 Electron Microscopy
		8.7 Emergent Physicochemical Properties of Cross-β Nanomaterials
		8.8 Conclusion
		References
	Chapter 9: Function-Inspired Design of Molecular Hydrogels: Paradigm-Shifting Biomaterials for Biomedical Applications
		9.1 Introduction
		9.2 Molecular Hydrogels from Self-Assembling Peptides (SAPs)
			9.2.1 Self-Healing SAPs for Cardiovascular Disease
			9.2.2 SAP-Based Molecular Hydrogels in Accelerated Wound Healing
			9.2.3 Hydrogels to Regulate Immune Response Toward the Implant
		9.3 Prodrug-Based Self-Assembled Hydrogels
		9.4 Stimuli-Guided Self-Assembly and Disassembly (Disease-Responsive Disassembly) of Small Molecules
			9.4.1 Enzyme-Responsive Hydrogels for Delivery of Immunosuppressants in Vascularized Composite Allotransplantation (VCA) and A...
			9.4.2 Ascorbyl Palmitate (AP or AP-16) Hydrogel Fibers for Charge-Dependent Localization, Adherence, and Enzyme-Responsive Dru...
			9.4.3 Stimuli-Responsive Molecular Hydrogels for Cancer Immunotherapy
		9.5 In Situ Forming Gels
			9.5.1 Other Applications: LMWHs for Gene Therapy and Delivery of NSAIDs
		9.6 Tissue-Engineering Scaffolds for Regenerative Medicine
		9.7 Future Perspectives
		9.8 Conclusions
		References
	Chapter 10: Smart Peptide Assembly Architectures to Mimic Biology´s Adaptive Properties and Applications
		10.1 Introduction
		10.2 Different Nanoarchitectonics
			10.2.1 Micelles
			10.2.2 Vesicles
			10.2.3 Fibers
			10.2.4 Tubes
			10.2.5 Tapes and Ribbons
			10.2.6 Nanospheres
		10.3 Self-Assembly Amino Acids to Nanoarchitectonics
		10.4 Peptide Self-Assembly to Nanoarchitectonics
			10.4.1 Supramolecular Helices
			10.4.2 Single-Stranded Supramolecular Helix
			10.4.3 Double-Stranded Supramolecular Helix
			10.4.4 Triple-Stranded Supramolecular Helix
			10.4.5 Quadruple-Stranded Supramolecular Helix
			10.4.6 Herringbone Helix
				10.4.6.1 Supramolecular β-Sheets
				10.4.6.2 β-Sheet from Cyclic Peptide Foldamers
				10.4.6.3 β-Sheet from Acyclic Peptide Foldamers
			10.4.7 Factors on Self-Assembly of Folded Peptides
			10.4.8 Effect of Amino Acid Sequence
			10.4.9 Effect of Concentration
			10.4.10 Effect of Sonication
			10.4.11 Effect of Spacer
		10.5 Effect of pH
		10.6 Effect of Solvent
		10.7 Effect of Other Stimulus
		10.8 Conclusion
		References
Part IV: Architectonics of Nucleic Acids
	Chapter 11: Bio-inspired Functional DNA Architectures
		11.1 Introduction
		11.2 Modification Strategies
		11.3 DNA Duplexes with External Modifications
		11.4 DNA Duplexes with Internal Modifications
		11.5 Higher-Order DNA Architectures
		11.6 Conclusions and Outlook
		References
	Chapter 12: Functional Molecule-Templated DNA Molecular Architectonics
		12.1 Introduction
			12.1.1 SFM Toolbox
			12.1.2 Templated DNA Architectures
				12.1.2.1 SFM-Templated DNA Architectonics Driven by Canonical Hydrogen Bonding Interactions
				12.1.2.2 SFM-Templated DNA Architectonics Driven by Noncanonical Hydrogen Bonding Interactions
				12.1.2.3 SFM-Templated DNA Architectonics Driven by Ionic Interactions
				12.1.2.4 SFM-Templated DNA Architectonics Driven by Metal-Base Pair Interactions
		12.2 Nanoparticle-Templated DNA Architectonics
		12.3 Biomolecule-Templated DNA Architectonics
			12.3.1 Threading Intercalator-Guided DNA Architectonics
		12.4 Conclusions and Future Perspectives
		References
	Chapter 13: Architectures of Nucleolipid Assemblies and Their Applications
		13.1 Introduction
		13.2 Architectonic Landscape of Nucleolipids
			13.2.1 Design and Tuning of Nucleolipid Assemblies
			13.2.2 Non-ionic Nucleolipids
			13.2.3 Ionic Nucleolipids
			13.2.4 Glycosyl-Based Nucleolipids
		13.3 Applications of Nucleolipid Assemblies
			13.3.1 Nucleolipid Delivery Vehicles, Injectable Gels and Tissue Engineering Scaffolds
			13.3.2 Fluorescent Nucleolipids and Sensors
			13.3.3 Nucleolipid Assemblies for Environmental Remediation
		13.4 Conclusions and Outlook
		References
	Chapter 14: Nucleobase- and DNA-Functionalized Hydrogels and Their Applications
		14.1 Introduction
		14.2 G-Quadruplex Hydrogel
			14.2.1 Brief History of G-Quadruplex Hydrogel
			14.2.2 G-Quadruplex Hydrogels from Binary Systems
			14.2.3 Boronate Ester Functionalized Dynamic G-Quadruplex Hydrogels and Their Applications
		14.3 Oligonucleotide-Based Hydrogel
			14.3.1 Conjugated Oligonucleotides
			14.3.2 Peptide-Oligonucleotide Conjugates (POCs)
			14.3.3 Lipid-Oligonucleotide Conjugates
			14.3.4 Carbohydrate-Oligonucleotide Conjugates
		14.4 Conclusion
		References
	Chapter 15: RNA Nanoarchitectures and Their Applications
		15.1 Introduction
		15.2 RNA vs DNA: Structural Differences and Its Implications on Stability
			15.2.1 Key Structural Differences Between RNA and DNA
			15.2.2 Structural Implications on RNA Stability
		15.3 Aspects of RNA Nanoarchitecture
			15.3.1 RNA Nanotechnology in Comparison with DNA Nanotechnology
			15.3.2 Building Blocks of RNA Nanoarchitecture: RNA Motifs
			15.3.3 Strategies for Building RNA Nanoarchitecture
		15.4 Applications of RNA Nanoarchitecture
			15.4.1 RNA Nanoarchitectures in Drug Delivery
			15.4.2 In Vivo Assembly of RNA Nanoarchitecture
			15.4.3 RNA Nanoarchitecture in Detection and Imaging: Light-Up Aptamers
			15.4.4 RNA Nanoarchitecture in Gene Editing: CRISPR-Cas System
			15.4.5 RNA Computing
		15.5 Future Prospective
		References
Part V: Architectonics of Complex Systems and Advanced Objects
	Chapter 16: Covalent Organic Frameworks as Tunable Supports for HER, OER, and ORR Catalysts: A New Addition to Heterogeneous E...
		16.1 Introduction to Covalent Organic Framework [COF]
		16.2 Chemistry of COF Formation
		16.3 Selected Notable Chemistries for COF-MOF Construction
		16.4 Self-Exfoliation and Functionalizing Exfoliation Agent [FEA] (Fig. 16.12)
		16.5 Stability in Imine-COFs Through Chemical Design
		16.6 Imparting Nanoparticle Binding Units and Conductivity into COF
		16.7 Concepts in HER
		16.8 Concepts in Oxygen Evolution Reaction
		16.9 Acidic and Alkaline Polymer Catalyst for OER
		16.10 Analyzing OER Mechanism: A Thermodynamic Perspective
		16.11 OER Mechanism Based on Kinetic Measurements: Challenges
		16.12 Concepts in ORR: Different Pathways with Varying Thermodynamics
		16.13 COF as Active Porous Support to Improve Catalyst Activity
		16.14 Visible Light HER by Sulfone-Functionalized COF [169]
		16.15 Electrocatalysis Using COF with Transition Metals
		16.16 CFSE a Descriptor to Predict the Catalytic Activity of COF [204]
		16.17 OER by Semi-crystalline Highly Conjugated Phenazine COFs
		16.18 Modeling the Potential of a COF as a Bifunctional Catalyst
		16.19 Conclusion
		References
	Chapter 17: Ligand-Functionalized Nanostructures and Their Biomedical Applications
		17.1 Introduction
		17.2 Why Ligand Functionalization Is Important for Biomedical Application?
		17.3 Coating Chemistry for Nanoparticle
		17.4 Bioconjugation Chemistry for Ligand Functionalization of Nanoparticle
		17.5 Biomedical Applications of Ligand-Functionalized Nanostructures [1-25]
		17.6 Challenges and Future Aspect of Ligand-Functionalized Nanostructure for Biomedical Applications
		References
	Chapter 18: Biomimetic Composite Materials and Their Biological Applications
		18.1 Overview of Drug Delivery with Particulate Vehicles
		18.2 Particles Mimicking Mammalian Cell Architecture and Morphology
		18.3 Composites Mimicking Bacterial Cells
		18.4 Virus-Mimicking Synthetic Delivery Systems
		18.5 Drug Delivery Vehicles Imitating Antibody-Antigen Interactions
		18.6 Biomimetic Materials for Tissue Engineering
		18.7 Conclusion
		References
	Chapter 19: Combining Polymers, Nanomaterials, and Biomolecules: Nanostructured Films with Functional Properties and Applicati...
		19.1 Introduction
		19.2 Polymer Architectures with 1D, 2D, and 3D Dimensions
		19.3 Polymer 2D Nanoarchitectures from Mono- and Multilayer Films
		19.4 Biointerfaces: Applications as Mimetic Models and in Biosensing
			19.4.1 Langmuir Monolayers and Langmuir-Blodgett Films as Mimetic Models
			19.4.2 Polymers and Nanostructured Films for Biosensing
		19.5 Final Remarks
		References
	Chapter 20: Responsive Polymeric Architectures and Their Biomaterial Applications
		20.1 Nano- and Bio-materials
		20.2 ``Smart´´ Polymers
		20.3 ``Smart´´ Diagnostic Tools
			20.3.1 Early Disease Diagnosis
			20.3.2 Diagnosis in the Developing World
			20.3.3 ``Smart´´ Microfluidic Flow Control
		20.4 ``Smart´´ Biological Assays
			20.4.1 Biological Affinity Measurement
			20.4.2 Bio-separations
		20.5 Conclusions
		References
Index




نظرات کاربران