دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: فیزیک ویرایش: 3 نویسندگان: John C. Morrison سری: ISBN (شابک) : 9780128177907 ناشر: Academic Press سال نشر: 2020 تعداد صفحات: 478 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 22 مگابایت
در صورت تبدیل فایل کتاب Modern Physics with Modern Computational Methods: for Scientists and Engineers به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فیزیک مدرن با روش های محاسباتی مدرن: برای دانشمندان و مهندسان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
فیزیک مدرن با روشهای محاسباتی مدرن، ویرایش سوم ایدههایی را ارائه میکند که فیزیک مدرن را شکل دادهاند و مقدمهای بر تحقیقات فعلی در زمینههای مختلف فیزیک ارائه میدهد. این کتاب که به عنوان متن اولین دوره در فیزیک مدرن پس از یک دوره مقدماتی فیزیک با حساب دیفرانسیل و انتگرال در نظر گرفته شده است، با شرح مختصری و متمرکز از آزمایشهایی که منجر به فرمولبندی نظریه کوانتومی جدید شد، آغاز میشود، در حالی که فصول بعدی عمیقتر به فیزیک زیربنایی در این ویرایش جدید، معادلات دیفرانسیل که به وجود میآیند با تقریب تفاضل محدود مشتقات یا با استفاده از روش collocation spline به مجموعهای از معادلات خطی یا معادلات ماتریسی تبدیل میشوند. برنامه های متلب برای حل معادلات مقدار ویژه برای یک ذره در یک چاه محدود و نوسان ساز هارمونیک ساده و برای حل معادله شعاعی هیدروژن توضیح داده شده است. پایین ترین راه حل های این مسائل با استفاده از MATLAB ترسیم شده و اهمیت فیزیکی این راه حل ها مورد بحث قرار گرفته است. هر یک از فصل های بعدی با شرح تحولات مدرن به پایان می رسد.
Modern Physics with Modern Computational Methods, Third Edition presents the ideas that have shaped modern physics and provides an introduction to current research in the different fields of physics. Intended as the text for a first course in modern physics following an introductory course in physics with calculus, the book begins with a brief and focused account of experiments that led to the formulation of the new quantum theory, while ensuing chapters go more deeply into the underlying physics. In this new edition, the differential equations that arise are converted into sets of linear equation or matrix equations by making a finite difference approximation of the derivatives or by using the spline collocation method. MATLAB programs are described for solving the eigenvalue equations for a particle in a finite well and the simple harmonic oscillator and for solving the radial equation for hydrogen. The lowest-lying solutions of these problems are plotted using MATLAB and the physical significance of these solutions are discussed. Each of the later chapters conclude with a description of modern developments.
Front-Matter_2021_Modern-Physics-with-Modern-Computational-Methods Copyright_2021_Modern-Physics-with-Modern-Computational-Methods Dedication_2021_Modern-Physics-with-Modern-Computational-Methods Dedication About the dedication Dedication Contents_2021_Modern-Physics-with-Modern-Computational-Methods Contents Preface_2021_Modern-Physics-with-Modern-Computational-Methods Preface This new third edition Acknowledgments Supplements to the text Introduction_2021_Modern-Physics-with-Modern-Computational-Methods Introduction I.1 The concepts of particles and waves I.1.1 The variables of a moving particle I.1.2 Elementary properties of waves Traveling waves Standing waves The Fourier theorem Representation of waves using exponentials I.1.3 Interference and diffraction phenomena Electromagnetic waves I.2 An overview of quantum physics Basic equations Variables of particles Properties of waves Electromagnetic radiation Summary Suggestions for further reading Questions Problems Chapter-1---The-wave-particle-d_2021_Modern-Physics-with-Modern-Computationa 1 The wave-particle duality 1.1 The particle model of light 1.1.1 The photoelectric effect 1.1.2 The absorption and emission of light by atoms 1.1.2.1 Principles of atomic spectra 1.1.2.2 The Bohr model of the atom 1.1.2.3 The energy levels and spectra of hydrogen 1.1.3 The Compton effect 1.2 The wave model of radiation and matter 1.2.1 X-ray scattering 1.2.2 Electron waves Suggestions for further reading Basic equations Photoelectric effect Emission and absorption of radiation by atoms Wave properties of radiation and matter Summary Questions Problems Chapter-2---The-Schr-dinger-wave-_2021_Modern-Physics-with-Modern-Computatio 2 The Schrödinger wave equation 2.1 The wave equation 2.2 Probabilities and average values 2.3 The finite potential well 2.4 The simple harmonic oscillator 2.5 Time evolution of the wave function Suggestion for further reading Basic equations The wave equation Solutions of Schrödinger time-independent equation Time evolution of wave function Summary Questions Problems Chapter-3---Operators-and-wa_2021_Modern-Physics-with-Modern-Computational-M 3 Operators and waves 3.1 Observables, operators, and eigenvalues 3.2 The finite well and harmonic oscillator using finite differences 3.3 The finite well and harmonic oscillator with spline collocation 3.4 Electron scattering 3.4.1 Scattering from a potential step 3.4.2 Barrier penetration and tunneling 3.4.3 T-matrices 3.4.4 Scattering from more complex barriers 3.5 The Heisenberg uncertainty principle 3.5.1 Wave packets and the uncertainty principle 3.5.2 Average value of the momentum and the energy Suggestion for further reading Basic equations Observables, operators, and eigenvalues Electron scattering The Heisenberg uncertainty principle Summary Questions Problems Chapter-4---The-hydrogen-at_2021_Modern-Physics-with-Modern-Computational-Me 4 The hydrogen atom 4.1 The Gross structure of hydrogen 4.1.1 The Schrödinger equation in three dimensions 4.1.2 The energy levels of hydrogen 4.1.3 The wave functions of hydrogen 4.1.4 Probabilities and average values in three dimensions 4.1.5 The intrinsic spin of the electron 4.2 Radiative transitions 4.2.1 The Einstein A and B coefficients 4.2.2 Transition probabilities 4.2.3 Selection rules 4.3 The fine structure of hydrogen 4.3.1 The magnetic moment of the electron 4.3.2 The Stern-Gerlach experiment 4.3.3 The spin of the electron 4.3.4 The addition of angular momentum Rule for addition of angular momenta 4.3.5 * The fine structure 4.3.6 * The Zeeman effect Suggestion for further reading Basic equations Wave function for hydrogen Probabilities and average values Transition probabilities The fine structure of hydrogen Summary Questions Problems Chapter-5---Many-electron-at_2021_Modern-Physics-with-Modern-Computational-M 5 Many-electron atoms 5.1 The independent-particle model 5.1.1 Antisymmetric wave functions and the Pauli exclusion principle 5.1.2 The central-field approximation 5.2 Shell structure and the periodic table 5.3 The LS term energies 5.4 Configurations of two electrons 5.4.1 Configurations of equivalent electrons 5.4.2 Configurations of two nonequivalent electrons 5.5 The Hartree-Fock method 5.5.1 The Hartree-Fock applet 5.5.2 The size of atoms and the strength of their interactions 5.6 Further developments in atomic theory Suggestions for further reading Basic equations Definition of atomic units Atomic unit of distance Atomic unit of energy Summary Questions Problems Chapter-6---The-emergence-of-masers_2021_Modern-Physics-with-Modern-Computat 6 The emergence of masers and lasers 6.1 Radiative transitions 6.2 Laser amplification 6.3 Laser cooling 6.4 * Magneto-optical traps Suggestions for further reading Basic equations Hamiltonian of outer electron in the magnetic field of nucleus Total angular momentum of electron and nucleus The z-component of magnetic moment of outer electron The energy of the outer electron due the magnetic field B Summary Questions Problems Chapter-7---Diatomic-molecu_2021_Modern-Physics-with-Modern-Computational-Me 7 Diatomic molecules 7.1 The hydrogen molecular ion 7.2 The Hartree-Fock method 7.3 Exoplanets References Summary Questions Chapter-8---Statistical-phys_2021_Modern-Physics-with-Modern-Computational-M 8 Statistical physics 8.1 The nature of statistical laws 8.2 An ideal gas 8.3 Applications of Maxwell-Boltzmann statistics 8.3.1 Maxwell distribution of the speeds of gas particles 8.3.2 Black body radiation 8.4 Entropy and the laws of thermodynamics 8.4.1 The four laws of thermodynamics 8.5 A perfect quantum gas 8.6 Bose-Einstein condensation 8.7 Free-electron theory of metals Suggestions for further reading Basic equations Maxwell-Boltzmann statistics Applications of Maxwell-Boltzmann statistics Entropy and the laws of thermodynamics Quantum statistics Free-electron theory of metals Summary Questions Problems Chapter-9---Electronic-structure-_2021_Modern-Physics-with-Modern-Computatio 9 Electronic structure of solids 9.1 The Bravais lattice 9.2 Additional crystal structures 9.2.1 The diamond structure 9.2.2 The hexagonal close-packed structure 9.2.3 The sodium chloride structure 9.3 The reciprocal lattice 9.4 Lattice planes 9.5 Bloch's theorem Bloch's theorem Alternate form of Bloch's theorem 9.6 Diffraction of electrons by an ideal crystal 9.7 The band gap 9.8 Classification of solids 9.8.1 The band picture Insulators Semiconductors Metals Graphene Carbon nanotubes 9.8.2 The bond picture Covalent bonding Ionic bonding Molecular crystals Hydrogen-bonded crystals Metals Suggestions for further reading Basic equations Bravais lattice Reciprocal lattice Bloch's theorem Scattering of electrons by a crystal Summary Questions Problems Chapter-10---Charge-carriers-in-sem_2021_Modern-Physics-with-Modern-Computat 10 Charge carriers in semiconductors 10.1 Density of charge carriers in semiconductors 10.2 Doped crystals 10.3 A few simple devices 10.3.1 The p-n junction 10.3.2 Solar cells 10.3.3 Bipolar transistors 10.3.4 Junction field-effect transistors (JFET) 10.3.5 MOSFETs Suggestions for further reading Summary Questions Chapter-11---Semiconductor-la_2021_Modern-Physics-with-Modern-Computational- 11 Semiconductor lasers 11.1 Motion of electrons in a crystal 11.2 Band structure of semiconductors 11.2.1 Conduction bands 11.2.2 Valence bands 11.2.3 Optical transitions 11.3 Heterostructures 11.3.1 Properties of heterostructures 11.3.2 Experimental methods 11.3.3 Theoretical methods 11.4 Quantum wells 11.5 Quantum barriers 11.5.1 Scattering of electrons by potential barriers 11.5.2 Light waves 11.5.3 Reflection and transmission by an interface 11.5.4 The Fabry-Perot laser 11.6 Phenomenological description of diode lasers 11.6.1 The rate equation 11.6.2 Well below threshold 11.6.3 The laser threshold 11.6.4 Above threshold Suggestions for further reading Basic equations Quantum wells in heterostructures Quantum barriers Reflection and transmission of light Phenomenological description of diode lasers Summary Questions Problems Chapter-12---The-special-theory-of_2021_Modern-Physics-with-Modern-Computati 12 The special theory of relativity 12.1 Galilean transformations 12.2 The relative nature of simultaneity 12.3 Lorentz transformation 12.3.1 The transformation equations 12.3.2 Lorentz contraction 12.3.3 Time dilation 12.3.4 The invariant space-time interval 12.3.5 Addition of velocities 12.3.6 The Doppler effect 12.4 Space-time diagrams 12.4.1 Particle motion 12.4.2 Lorentz transformations 12.4.3 The light cone 12.5 Four-vectors Suggestions for further reading Basic equations Galilean transformations The relativistic transformations Four vectors Summary Questions Problems Chapter-13---The-relativistic-wave-equati_2021_Modern-Physics-with-Modern-Co 13 The relativistic wave equations and general relativity 13.1 Momentum and energy 13.2 Conservation of energy and momentum 13.3 * The Dirac theory of the electron 13.3.1 Review of the Schrödinger theory 13.3.2 The Klein-Gordon equation 13.3.3 The Dirac equation 13.3.4 Plane wave solutions of the Dirac equation 13.4 * Field quantization 13.5 The general theory of relativity 13.5.1 The principle of equivalence 13.5.2 The path of a freely-falling body in curvilinear coordinates 13.5.3 Relations between partial derivatives of gμν and Γλμν 13.5.4 A slow moving particle in a weak gravitational field 13.5.5 Vectors and tensors 13.5.6 Transformation of the affine connection 13.5.7 Covariant differentiation 13.5.8 The parallel transport of a vector along a curve 13.5.9 The curvature tensor 13.5.10 Einstein's field equations Suggestions for further reading Basic equations Definitions The Dirac theory of the electron Summary Questions Problems Chapter-14---Particle-physi_2021_Modern-Physics-with-Modern-Computational-Me 14 Particle physics 14.1 Leptons and quarks 14.2 Conservation laws 14.2.1 Energy, momentum, and charge 14.2.2 Lepton number 14.2.3 Baryon number 14.2.4 Strangeness 14.2.5 Charm, beauty, and truth 14.3 Spatial symmetries 14.3.1 Angular momentum of composite systems 14.3.2 Parity 14.4 Isospin and color 14.4.1 Isospin 14.4.1.1 Quarks 14.4.1.2 The light mesons 14.4.1.3 The light baryons 14.4.1.4 Pion-nucleon scattering 14.4.2 Color 14.5 Feynman diagrams 14.5.1 Electromagnetic interactions 14.5.2 Weak interactions 14.5.3 Strong interactions 14.6 The R(3) and SU(3) symmetry groups 14.6.1 The rotation group in three dimensions 14.6.2 The SU(3) symmetry group 14.6.3 The representations of SU(3) 14.6.3.1 The flavor SU(3) symmetry 14.6.3.2 The color SU(3) symmetry 14.7 * Gauge invariance and the electroweak theory 14.8 Spontaneous symmetry breaking and the discovery of the Higgs 14.9 Supersymmetry 14.9.1 Symmetries in physics 14.9.2 The Poincaré algebra 14.9.3 The supersymmetry algebra Suggestions for further reading Basic equations Leptons and quarks Definition of hypercharge and isospin Feynman diagrams SU(3) symmetry Summary Questions Problems Chapter-15---Nuclear-physi_2021_Modern-Physics-with-Modern-Computational-Met 15 Nuclear physics 15.1 Properties of nuclei 15.1.1 Nuclear sizes 15.1.2 Binding energies 15.1.3 The semiempirical mass formula 15.2 Decay processes 15.2.1 Alpha decay 15.2.2 The β-stability valley 15.2.3 Gamma decay 15.2.4 Natural radioactivity 15.3 The nuclear shell model 15.3.1 Nuclear potential wells 15.3.2 Nucleon states 15.3.3 Magic numbers 15.3.4 The spin-orbit interaction 15.4 Excited states of nuclei Suggestions for further reading Basic equations Binding energy The semiempirical formula Magic numbers Summary Questions Problems Index_2021_Modern-Physics-with-Modern-Computational-Methods Index Appendix-A---Constants-and-convers_2021_Modern-Physics-with-Modern-Computati A Constants and conversion factors Constants Particle masses Conversion factors Appendix-B---Atomic-masse_2021_Modern-Physics-with-Modern-Computational-Meth B Atomic masses Appendix-C---Introduction-to-M_2021_Modern-Physics-with-Modern-Computational C Introduction to MATLAB® Creating a vector Plotting functions Using Arrays in MATLAB Using functions in MATLAB Appendix-D---Solution-of-the-oscill_2021_Modern-Physics-with-Modern-Computat D Solution of the oscillator equation Appendix-E---The-average-value-of-t_2021_Modern-Physics-with-Modern-Computat E The average value of the momentum Appendix-F---The-Hartree-Fock-_2021_Modern-Physics-with-Modern-Computational F The Hartree-Fock applet Appendix-G---Integrals-that-arise-in-s_2021_Modern-Physics-with-Modern-Compu G Integrals that arise in statistical physics References Further reading