دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [3 ed.] نویسندگان: William W. Parson, Clemens Burda سری: ISBN (شابک) : 3031172213, 9783031172212 ناشر: Springer سال نشر: 2023 تعداد صفحات: 652 [653] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 18 Mb
در صورت تبدیل فایل کتاب Modern Optical Spectroscopy: From Fundamentals to Applications in Chemistry, Biochemistry and Biophysics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب طیفسنجی نوری مدرن: از مبانی تا کاربرد در شیمی، بیوشیمی و بیوفیزیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
ویرایش سوم این کتاب درسی توضیحات روشنی از پدیده های طیف سنجی نوری ارائه می دهد و نشان می دهد که چگونه تکنیک های طیف سنجی در شیمی، بیوشیمی و بیوفیزیک مدرن استفاده می شود. موضوعات ارائه شده عبارتند از: عملیات تقارن فلورسانس جذب الکترونیکی و ارتعاشی و محاسبات حالت عادی انتقال الکترون از مولکول های برانگیخته انتقال انرژی برهمکنش اکسایتون انسجام دایره ای دایره ای الکترونیکی و ارتعاشی و کاهش فاز فوق سریع پمپ-کاوشگر و فوتون-اکوی طیف سنجی طیف سنجی تک مول و فلوئوروسکولس تغییرات آنتروپی اپتیک کوانتومی جذب چند فوتونی پراکندگی رامان و تغییرات آنتروپی اپتیک غیرخطی در طی تحریک نوری و ارتعاشی اثرات استارک در مورد فرآیندهای سریع در مولکولهای منفرد طیفسنجی الکترونیکی و ارتعاشی دو بعدی این نسخه اصلاحشده و بهروز شده بحثهای گستردهای درباره طیفسنجی لیزری، طیفسنجی دوگانه بلوری ارائه میدهد. اپتیک غیر خطی، سلول های خورشیدی و دیودهای ساطع کننده نور. توضیحات به اندازه کافی کامل و مفصل هستند تا برای محققان، دانشجویان تحصیلات تکمیلی و دانشجویان پیشرفته در شیمی، بیوشیمی و بیوفیزیک مفید باشد. آنها مبتنی بر مکانیک کوانتومی وابسته به زمان هستند، اما از اصول اولیه توسعه یافته اند تا برای خوانندگانی که آموزش قبلی کمی در این زمینه دارند، قابل درک باشند. موضوعات و نکات برجسته اضافی در کادرهای ویژه در متن ارائه شده است. این کتاب به شکلی غنی با فیگورهای رنگی در سراسر آن مصور شده است. هر فصل با یک بخش از سوالات برای خودآزمایی به پایان می رسد.
The 3rd edition of this textbook offers clear explanations of optical spectroscopic phenomena and shows how spectroscopic techniques are used in modern chemistry, biochemistry and biophysics. Topics included are: electronic and vibrational absorption fluorescence symmetry operations and normal-mode calculations electron transfer from excited molecules energy transfer exciton interactions electronic and vibrational circular dichroism coherence and dephasing ultrafast pump-probe and photon-echo spectroscopy single-molecule and fluorescence-correlation spectroscopy Raman scattering multiphoton absorption quantum optics and non-linear optics entropy changes during photoexcitation electronic and vibrational Stark effects studies of fast processes in single molecules two-dimensional electronic and vibrational spectroscopy This revised and updated edition provides expanded discussions of laser spectroscopy, crystal symmetry, birefringence, non-linear optics, solar cells and light-emitting diodes. The explanations are sufficiently thorough and detailed to be useful for researchers, graduate students and advanced undergraduates in chemistry, biochemistry and biophysics. They are based on time-dependent quantum mechanics, but are developed from first principles so that they can be understood by readers with little prior training in the field. Additional topics and highlights are presented in special boxes in the text. The book is richly illustrated with color figures throughout. Each chapter ends with a section of questions for self-examination.
Contents List of Boxes 1: Introduction 1.1 Overview 1.2 The Beer-Lambert Law 1.3 Regions of the Electromagnetic Spectrum 1.4 Absorption Spectra of Proteins and Nucleic Acids 1.5 Absorption Spectra of Mixtures 1.6 The Photoelectric Effect 1.7 Techniques for Measuring Absorbance 1.8 Pump-Probe and Photon-Echo Experiments 1.9 Linear and Circular Dichroism 1.10 Distortions of Absorption Spectra by Light Scattering or Nonuniform Distributions of the Absorbing Molecules 1.11 Fluorescence 1.12 IR and Raman Spectroscopy 1.13 Lasers 1.14 Nomenclature 1.15 Questions References 2: Basic Concepts of Quantum Mechanics 2.1 Wavefunctions, Operators and Expectation Values 2.1.1 Wavefunctions 2.1.2 Operators and Expectation Values Box 2.1 Operators for Observable Properties Must Be Hermitian Box 2.2 Commutators and Formulations of the Position, Momentum and Hamiltonian Operators 2.2 The Time-Dependent and Time-Independent Schrödinger Equations Box 2.3 The Origin of the Time-Dependent Schrödinger Equation 2.2.1 Superposition States 2.3 Spatial Wavefunctions 2.3.1 A Free Particle 2.3.2 A Particle in a Box Box 2.4 Linear Momentum 2.3.3 The Harmonic Oscillator Box 2.5 Hermite Polynomials 2.3.4 Atomic Orbitals 2.3.5 Molecular Orbitals 2.3.6 Wavefunctions for Large Systems 2.4 Spin Wavefunctions and Singlet and Triplet States Box 2.6 Boltzmann, Fermi-Dirac and Bose-Einstein Statistics 2.5 Transitions Between States: Time-Dependent Perturbation Theory 2.6 Lifetimes of States and the Uncertainty Principle 2.7 Questions References 3: Light 3.1 Electromagnetic Fields 3.1.1 Electrostatic Forces and Fields 3.1.2 Electrostatic Potentials 3.1.3 Electromagnetic Radiation Box 3.1 Maxwell´s Equations and the Vector Potential 3.1.4 Energy Density and Irradiance 3.1.5 Electromagnetic Momentum 3.2 The Black-Body Radiation Law 3.3 Linear and Circular Polarization 3.4 Quantum Theory of Electromagnetic Radiation 3.5 Superposition States and Interference Effects in Quantum Optics 3.6 Refraction, Evanescent Radiation, and Surface Plasmons 3.7 The Classical Theory of Dielectric Dispersion 3.8 Nonlinear Optics 3.9 Birefringence and Electro-Optic Effects 3.10 Optical Wavepackets and Mode-Locked Lasers 3.11 Local-Field Correction Factors 3.12 Questions References 4: Electronic Absorption 4.1 Interactions of Electrons with Oscillating Electric Fields Box 4.1 Energy of a Dipole in an External Electric Field Box 4.2 Multipole Expansion of the Energy of a Set of Charges in a Variable External Field 4.2 The Rates of Absorption and Stimulated Emission Box 4.3 The Behavior of the Function [exp(iy)-1]/y as y goes to 0 Box 4.4 The Function sin2x/x2 and Its Integral 4.3 Transition Dipoles and Dipole Strengths Box 4.5 The Oscillating Electric Dipole of a Superposition State Box 4.6 The Mean-Squared Energy of Interaction of an External Field with Dipoles in an Isotropic System Box 4.7 Physical Constants and Conversion Factors for Absorption of Light 4.4 Calculating Transition Dipoles for π Molecular Orbitals 4.5 The Role of Molecular Symmetry in Electronic Transitions 4.6 Using Group Theory to Determine Whether a Transition Is Allowed by Symmetry 4.7 Linear Dichroism 4.8 Configuration Interactions Box 4.8 Evaluating Configuration-Interaction Coefficients 4.9 Calculating Electric Transition Dipoles with the Gradient Operator Box 4.9 The Relationship between Matrix Elements of the Electric Dipole and Gradient Operators Box 4.10 Matrix Elements of the Gradient Operator for Atomic 2p Orbitals Box 4.11 Selection Rules for Electric-Dipole Excitations of Linear Polyenes 4.10 Transition Dipoles for Excitations to Singlet and Triplet States 4.11 The Born-Oppenheimer Approximation, Franck-Condon Factors, and the Shapes of Electronic Absorption Bands Box 4.12 Recursion Formulas for Vibrational Overlap Integrals Box 4.13 Thermally Weighted Franck-Condon Factors 4.12 Spectroscopic Hole Burning 4.13 Effects of the Surroundings on Molecular Transition Energies 4.14 The Electronic Stark Effect Box 4.14 Electronic Stark Spectroscopy of Immobilized Molecules 4.15 Spectroscopy of Transition-Metal Complexes 4.16 Thermodynamics of Photoexcitation 4.17 Questions References 5: Fluorescence 5.1 The Einstein Coefficients for Absorption and Emission 5.2 The Stokes Shift 5.3 The Mirror-image Law 5.4 The Strickler-Berg Equation and Other Relationships Between Absorption and Fluorescence Box 5.1 The ν3 Factor in the Strickler-Berg Equation 5.5 Quantum Theory of Absorption and Emission Box 5.2 Creation and Annihilation Operators 5.6 Fluorescence Yields and Lifetimes 5.7 Fluorescent Probes and Tags 5.8 Quantum Dot Fluorescence 5.9 Photobleaching 5.10 Fluorescence Anisotropy 5.11 Single-molecule Fluorescence and High-resolution Fluorescence Microscopy 5.12 Fluorescence Correlation Spectroscopy Box 5.3 Binomial, Poisson and Gaussian Distributions 5.13 Intersystem Crossing, Phosphorescence, and Delayed Fluorescence 5.14 Electron Transfer from Excited Molecules 5.15 Solar Cells and Light-emitting Diodes 5.16 Aggregation-induced Emission 5.17 Questions References 6: Vibrational Absorption 6.1 Vibrational Normal Modes and Wavefunctions Box 6.1 Normal Coordinates and Molecular-dynamics Simulations 6.2 Vibrational Excitation 6.3 Selection Rules and Effects of Anharmonicity 6.4 Comparisons of IR and Raman Spectroscopy 6.5 Effects of Molecular Symmetry in IR and Raman Spectroscopy 6.6 Rotational Absorption and Fine Structure 6.7 Infrared Spectroscopy of Proteins and Nucleic Acids 6.8 Vibrational Stark Effects 6.9 IR Lasers 6.10 Questions References 7: Resonance Energy Transfer 7.1 Introduction 7.2 The Förster Theory Box 7.1 Dipole-dipole Interactions 7.3 Using Energy Transfer to Study Fast Processes in Single Protein Molecules 7.4 Exchange Coupling 7.5 Energy Transfer in Photosynthetic Antennas 7.6 Questions References 8: Exciton Interactions 8.1 Stationary States of Systems with Interacting Molecules Box 8.1 Why Must the Secular Determinant Be Zero? Box 8.2 Avoided Crossings and Conical Intersections of Energy Surfaces Box 8.3 Exciton States Are Stationary in the Absence of Further Perturbations 8.2 Effects of Exciton Interactions on the Absorption Spectra of Oligomers Box 8.4 The Sum Rule for Exciton Dipole Strengths 8.3 Transition-Monopole Treatments of Interaction Matrix Elements and Mixing with Charge-Transfer Transitions 8.4 Exciton Absorption Band Shapes and Dynamic Localization of Excitations 8.5 Exciton States in Photosynthetic Antenna Complexes 8.6 Excimers and Exciplexes 8.7 Questions References 9: Circular Dichroism 9.1 Magnetic Transition Dipoles and n - π Transitions Box 9.1 Quantum Theory of Magnetic-Dipole and Electric-Quadrupole Transitions 9.2 The Origin of Circular Dichroism Box 9.2 Ellipticity and Optical Rotation 9.3 Circular Dichroism of Dimers and Higher Oligomers 9.4 UV Circular Dichroism of Proteins and Nucleic Acids 9.5 Vibrational Circular Dichroism 9.6 Magnetic Circular Dichroism 9.7 Questions References 10: Coherence and Dephasing 10.1 Oscillations Between Quantum States of an Isolated System 10.2 The Density Matrix Box 10.1 Time Dependence of the Density Matrix for an Isolated Three-State System 10.3 The Stochastic Liouville Equation 10.4 Effects of Stochastic Relaxations on the Dynamics of Quantum Transitions Box 10.2 The ``Watched-Pot´´ or ``Quantum Zeno´´ Paradox 10.5 A Density-Matrix Treatment of Absorption of Weak, Continuous Light 10.6 The Relaxation Matrix Box 10.3 The Relaxation Matrix for a Two-State System Box 10.4 Dephasing by Static Inhomogeneity 10.7 More General Relaxation Functions and Spectral Lineshapes 10.8 Anomalous Fluorescence Anisotropy Box 10.5 Orientational Averages of Vector Dot Products 10.9 Questions References 11: Pump-Probe Spectroscopy, Photon Echoes, Two-Dimensional Spectroscopy and Vibrational Wavepackets 11.1 First-Order Optical Polarization 11.2 Third-Order Optical Polarization and Non-linear Response Functions 11.3 Pump-Probe Spectroscopy 11.4 Photon Echoes 11.5 Two-Dimensional Electronic and Vibrational Spectroscopy 11.6 Transient Gratings 11.7 Vibrational Wavepackets 11.8 Wavepacket Pictures of Spectroscopic Transitions 11.9 Questions References 12: Raman Scattering and Other Multi-photon Processes 12.1 Types of Light Scattering 12.2 The Kramers-Heisenberg-Dirac Theory Box 12.1 Quantum Theory of Electronic Polarizability 12.3 The Wavepacket Picture of resonance Raman Scattering 12.4 Selection Rules for Raman Scattering 12.5 Surface-enhanced Raman Scattering 12.6 Applications of Raman Spectroscopy 12.7 Coherent (Stimulated) Raman Scattering 12.8 Multi-photon Absorption 12.9 Quasielastic (Dynamic) Light Scattering (Photon Correlation Spectroscopy) 12.10 Mie scattering by Larger Particles 12.11 Questions References Appendix A Vectors Matrices Fourier Transforms Phase Shift and Modulation Amplitude in Frequency-Domain Spectroscopy CGS and SI Units and Abbreviations Harmonic-Oscillator Wavefunction Integrals References Index