دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: بهینه سازی، تحقیق در عملیات. ویرایش: نویسندگان: Neculai Andrei سری: Springer Optimization and Its Applications, 195 ISBN (شابک) : 3031087194, 9783031087196 ناشر: Springer سال نشر: 2022 تعداد صفحات: 824 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 22 مگابایت
در صورت تبدیل فایل کتاب Modern Numerical Nonlinear Optimization به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب بهینه سازی غیرخطی عددی مدرن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Contents List of Algorithms List of Applications List of Figures List of Tables 1: Introduction 1.1 Mathematical Modeling: Linguistic Models Versus Mathematical Models 1.2 Mathematical Modeling and Computational Sciences 1.3 The Modern Modeling Scheme for Optimization 1.4 Classification of Optimization Problems 1.5 Optimization Algorithms 1.6 Collections of Applications for Numerical Experiments 1.7 Comparison of Algorithms 1.8 The Structure of the Book 2: Fundamentals on Unconstrained Optimization. Stepsize Computation 2.1 The Problem 2.2 Fundamentals on the Convergence of the Line-Search Methods 2.3 The General Algorithm for Unconstrained Optimization 2.4 Convergence of the Algorithm with Exact Line-Search 2.5 Inexact Line-Search Methods 2.6 Convergence of the Algorithm with Inexact Line-Search 2.7 Three Fortran Implementations of the Inexact Line-Search 2.8 Numerical Studies: Stepsize Computation 3: Steepest Descent Methods 3.1 The Steepest Descent Convergence of the Steepest Descent Method for Quadratic Functions Inequality of Kantorovich Numerical Study Convergence of the Steepest Descent Method for General Functions 3.2 The Relaxed Steepest Descent Numerical Study: SDB Versus RSDB 3.3 The Accelerated Steepest Descent Numerical Study 3.4 Comments on the Acceleration Scheme 4: The Newton Method 4.1 The Newton Method for Solving Nonlinear Algebraic Systems 4.2 The Gauss-Newton Method 4.3 The Newton Method for Function Minimization 4.4 The Newton Method with Line-Search 4.5 Analysis of Complexity 4.6 The Modified Newton Method 4.7 The Newton Method with Finite-Differences 4.8 Errors in Functions, Gradients, and Hessians 4.9 Negative Curvature Direction Methods 4.10 The Composite Newton Method 5: Conjugate Gradient Methods 5.1 The Concept of Nonlinear Conjugate Gradient 5.2 The Linear Conjugate Gradient Method The Linear Conjugate Gradient Algorithm Convergence Rate of the Linear Conjugate Gradient Algorithm Preconditioning Incomplete Cholesky Factorization Comparison of the Convergence Rate of the Linear Conjugate Gradient and of the Steepest Descent 5.3 General Convergence Results for Nonlinear Conjugate Gradient Methods Convergence Under the Strong Wolfe Line-Search Convergence Under the Wolfe Line-Search 5.4 Standard Conjugate Gradient Methods Conjugate Gradient Methods with gk+12 in the Numerator of βk The Fletcher-Reeves Method The CD Method The Dai-Yuan Method Conjugate Gradient Methods with in the Numerator of βk The Polak-Ribière-Polyak Method The Hestenes-Stiefel Method The Liu-Storey Method Numerical Study: Standard Conjugate Gradient Methods 5.5 Hybrid Conjugate Gradient Methods Hybrid Conjugate Gradient Methods Based on the Projection Concept Numerical Study: Hybrid Conjugate Gradient Methods Hybrid Conjugate Gradient Methods as Convex Combinations of the Standard Conjugate Gradient Methods The Hybrid Convex Combination of LS and DY Numerical Study: NDLSDY 5.6 Conjugate Gradient Methods as Modifications of the Standard Schemes The Dai-Liao Conjugate Gradient Method The Conjugate Gradient with Guaranteed Descent (CG-DESCENT) Numerical Study: CG-DESCENT The Conjugate Gradient with Guaranteed Descent and Conjugacy Conditions and a Modified Wolfe Line-Search (DESCON) Numerical Study: DESCON 5.7 Conjugate Gradient Methods Memoryless BFGS Preconditioned The Memoryless BFGS Preconditioned Conjugate Gradient (CONMIN) Numerical Study: CONMIN The Conjugate Gradient Method Closest to the Scaled Memoryless BFGS Search Direction (DK / CGOPT) Numerical Study: DK/CGOPT 5.8 Solving Large-Scale Applications 6: Quasi-Newton Methods 6.1 DFP and BFGS Methods 6.2 Modifications of the BFGS Method 6.3 Quasi-Newton Methods with Diagonal Updating of the Hessian 6.4 Limited-Memory Quasi-Newton Methods 6.5 The SR1 Method 6.6 Sparse Quasi-Newton Updates 6.7 Quasi-Newton Methods and Separable Functions 6.8 Solving Large-Scale Applications 7: Inexact Newton Methods 7.1 The Inexact Newton Method for Nonlinear Algebraic Systems 7.2 Inexact Newton Methods for Functions Minimization 7.3 The Line-Search Newton-CG Method 7.4 Comparison of TN Versus Conjugate Gradient Algorithms 7.5 Comparison of TN Versus L-BFGS 7.6 Solving Large-Scale Applications 8: The Trust-Region Method 8.1 The Trust-Region 8.2 Algorithms Based on the Cauchy Point 8.3 The Trust-Region Newton-CG Method 8.4 The Global Convergence 8.5 Iterative Solution of the Subproblem 8.6 The Scaled Trust-Region 9: Direct Methods for Unconstrained Optimization 9.1 The NELMED Algorithm 9.2 The NEWUOA Algorithm 9.3 The DEEPS Algorithm 9.4 Numerical Study: NELMED, NEWUOA, and DEEPS 10: Constrained Nonlinear Optimization Methods: An Overview 10.1 Convergence Tests 10.2 Infeasible Points 10.3 Approximate Subproblem: Local Models and Their Solving 10.4 Globalization Strategy: Convergence from Remote Starting Points 10.5 The Refining the Local Model 11: Optimality Conditions for Nonlinear Optimization 11.1 General Concepts in Nonlinear Optimization 11.2 Optimality Conditions for Unconstrained Optimization 11.3 Optimality Conditions for Problems with Inequality Constraints 11.4 Optimality Conditions for Problems with Equality Constraints 11.5 Optimality Conditions for General Nonlinear Optimization Problems 11.6 Duality 12: Simple Bound Constrained Optimization 12.1 Necessary Conditions for Optimality 12.2 Sufficient Conditions for Optimality 12.3 Methods for Solving Simple Bound Optimization Problems 12.4 The Spectral Projected Gradient Method (SPG) Numerical Study-SPG: Quadratic Interpolation versus Cubic Interpolation 12.5 L-BFGS with Simple Bounds (L-BFGS-B) Numerical Study: L-BFGS-B Versus SPG 12.6 Truncated Newton with Simple Bounds (TNBC) 12.7 Applications Application A1 (Elastic-Plastic Torsion) Application A2 (Pressure Distribution in a Journal Bearing) Application A3 (Optimal Design with Composite Materials) Application A4 (Steady-State Combustion) Application A6 (Inhomogeneous Superconductors: 1-D Ginzburg-Landau) 13: Quadratic Programming 13.1 Equality Constrained Quadratic Programming Factorization of the Full KKT System The Schur-Complement Method The Null-Space Method Large-Scale Problems The Conjugate Gradient Applied to the Reduced System The Projected Conjugate Gradient Method 13.2 Inequality Constrained Quadratic Programming The Primal Active-Set Method An Algorithm for Positive Definite Hessian Reduced Gradient for Inequality Constraints The Reduced Gradient for Simple Bounds The Primal-Dual Active-Set Method 13.3 Interior Point Methods Stepsize Selection 13.4 Methods for Convex QP Problems with Equality Constraints 13.5 Quadratic Programming with Simple Bounds: The Gradient Projection Method The Cauchy Point Subproblem Minimization 13.6 Elimination of Variables 14: Penalty and Augmented Lagrangian Methods 14.1 The Quadratic Penalty Method 14.2 The Nonsmooth Penalty Method 14.3 The Augmented Lagrangian Method 14.4 Criticism of the Penalty and Augmented Lagrangian Methods 14.5 A Penalty-Barrier Algorithm (SPENBAR) The Penalty-Barrier Method Global Convergence Numerical Study-SPENBAR: Solving Applications from the LACOP Collection 14.6 The Linearly Constrained Augmented Lagrangian (MINOS) MINOS for Linear Constraints Numerical Study: MINOS for Linear Programming MINOS for Nonlinear Constraints Numerical Study-MINOS: Solving Applications from the LACOP Collection 15: Sequential Quadratic Programming 15.1 A Simple Approach to SQP 15.2 Reduced-Hessian Quasi-Newton Approximations 15.3 Merit Functions 15.4 Second-Order Correction (Maratos Effect) 15.5 The Line-Search SQP Algorithm 15.6 The Trust-Region SQP Algorithm 15.7 Sequential Linear-Quadratic Programming (SLQP) 15.8 A SQP Algorithm for Large-Scale-Constrained Optimization (SNOPT) 15.9 A SQP Algorithm with Successive Error Restoration (NLPQLP) 15.10 Active-Set Sequential Linear-Quadratic Programming (KNITRO/ACTIVE) 16: Primal Methods: The Generalized Reduced Gradient with Sequential Linearization 16.1 Feasible Direction Methods 16.2 Active Set Methods 16.3 The Gradient Projection Method 16.4 The Reduced Gradient Method 16.5 The Convex Simplex Method 16.6 The Generalized Reduced Gradient Method (GRG) 16.7 GRG with Sequential Linear or Sequential Quadratic Programming (CONOPT) 17: Interior-Point Methods 17.1 Prototype of the Interior-Point Algorithm 17.2 Aspects of the Algorithmic Developments 17.3 Line-Search Interior-Point Algorithm 17.4 A Variant of the Line-Search Interior-Point Algorithm 17.5 Trust-Region Interior-Point Algorithm 17.6 Interior-Point Sequential Linear-Quadratic Programming (KNITRO/INTERIOR) 18: Filter Methods 18.1 Sequential Linear Programming Filter Algorithm 18.2 Sequential Quadratic Programming Filter Algorithm 19: Interior-Point Filter Line-Search 19.1 Basic Algorithm IPOPT The Primal-Dual Barrier Approach Solving the Barrier Problem Line-Search Filter Method Second-Order Corrections The Algorithm 19.2 Implementation Details General Lower and Upper Bounds Initialization Handling Unbounded Solution Sets Inertia Correction Automatic Scaling of the Problem Feasibility Restoration Phase Numerical Study-IPOPT: Solving Applications from the LACOP Collection 20: Direct Methods for Constrained Optimization 20.1 COBYLA Algorithm Numerical Study-COBYLA Algorithm 20.2 DFL Algorithm Numerical Study-DFL Algorithm Appendix A: Mathematical Review A1. Elements of Applied Numerical Linear Algebra Vectors Norms of Vectors Matrices Matrix Norms Subspaces Inverse of a Matrix Orthogonality Eigenvalues Positive Definite Matrices Gaussian Elimination (LU Factorization) Gaussian Elimination with Partial Pivoting Gaussian Elimination with Complete Pivoting Cholesky Factorization Modified Cholesky Factorization QR Decomposition Singular Value Decomposition Spectral Decomposition (Symmetric Eigenvalue Decomposition) Elementary Matrices Conditioning and Stability Determinant of a Matrix Trace of a matrix A2. Elements of Analysis Rates of Convergence Finite-Difference Derivative Estimates Automatic Differentiation Order Notation A3. Elements of Topology in the Euclidian Space n A4. Elements of Convexity:Convex Sets and Convex Functions Convex Sets Convex Functions Strong Convexity Appendix B: The SMUNO Collection Small-Scale Continuous Unconstrained Optimization Applications Appendix C: The LACOP Collection Large-Scale Continuous Nonlinear Optimization Applications Appendix D: The MINPACK-2 Collection Large-Scale Unconstrained Optimization Applications References Author Index Subject Index