ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Modern Mechanobiology Convergence of Biomechanics, Development, and Genomics

دانلود کتاب مکانیک زیست شناسی مدرن همگرایی بیومکانیک، توسعه و ژنومیک

Modern Mechanobiology Convergence of Biomechanics, Development, and Genomics

مشخصات کتاب

Modern Mechanobiology Convergence of Biomechanics, Development, and Genomics

ویرایش:  
نویسندگان: , , ,   
سری:  
ISBN (شابک) : 9789814800587, 9780429294839 
ناشر:  
سال نشر: 2021 
تعداد صفحات: 262 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 15 مگابایت 

قیمت کتاب (تومان) : 42,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 3


در صورت تبدیل فایل کتاب Modern Mechanobiology Convergence of Biomechanics, Development, and Genomics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مکانیک زیست شناسی مدرن همگرایی بیومکانیک، توسعه و ژنومیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Table of Contents
Preface
Chapter 1: Shear Stress, Mechanosensors, and Atherosclerosis
	1.1: Introduction
	1.2: Shear Stress and Endothelial Phenotype
	1.3: Mechanosensors in Atherosclerosis
		1.3.1: PECAM1/VEGFR2/VE-Cadherin Mechanosensing Complex
		1.3.2: TRPV4
		1.3.3: Piezo1
		1.3.4: Primary Cilia
		1.3.5: Caveolae
		1.3.6: Rap1
		1.3.7: Glycocalyx
		1.3.8: Integrins
		1.3.9: GPCR
		1.3.10: Emerging New Mechanosensors
	1.4: Conclusions and Perspectives
Chapter 2: Role of Krüppel-Like Factors in Endothelial Cell Function and Shear Stress–Mediated Vasoprotection
	2.1: Introduction
	2.2: Krüppel-Like Factors
		2.2.1: Krüppel-Like Factor 2
			2.2.1.1: Regulation of KLF2 by laminar shear stress
			2.2.1.2: Targets of shear stress–induced KLF2
		2.2.2: Krüppel-Like Factor 4
	2.3: Future Directions
Chapter 3: Aortic Valve Endothelium Mechanobiology
	3.1: Introduction
		3.1.1: The Aortic Valve
		3.1.2: Aortic Valve Cell Types
		3.1.3: Calcific Aortic Valve Disease
		3.1.4: Aortic Valve Mechanics
		3.1.5: The Role of Shear Stress in the Aortic Valve Endothelium
	3.2: Shear Stress Waveforms of Aortic Valves
		3.2.1: Aortic Valve Shear Stress Waveforms Are Estimated
		3.2.2: Aortic Valves Have Side-Specific Shear Stress Waveforms
		3.2.3: Bicuspid Aortic Valves Have Abnormal Shear Stress Waveforms
	3.3: Valve Endothelial Response to Shear Stress
		3.3.1: Devices Designed for Studying VEC Response to Shear Stress
		3.3.2: VEC Phenotype Is Shear Stress Regulated
		3.3.3: Side-Dependent Hemodynamics Correlate with Side-Specific Phenotypes
	3.4: Shear Stress-Regulated Mechanisms of Valve Homeostasis and Disease
		3.4.1: Endothelial to Mesenchymal Transformation
		3.4.2: eNOS, Nitric Oxide, Notch1, and Cadherin-11
		3.4.3: Krüppel-Like Factor 2
		3.4.4: Transforming Growth Factor-β
	3.5: Conclusions
Chapter 4: Mechanotransduction of Cardiovascular Development and Regeneration
	4.1: Introduction
	4.2: A Primer on Cardiovascular Anatomy and Physiology
		4.2.1: Cardiovascular Anatomy
		4.2.2: Heart Development
		4.2.3: Vascular Development
	4.3: Mechanics of the Cardiovascular System
		4.3.1: Cardiac Cycle
		4.3.2: Blood Mechanics
		4.3.3: Cardiovascular Extracellular Matrix Composition
	4.4 Engineering Approaches to Studying Mechanotransduction in Cardiovascular Development
		4.4.1: Cell Sources
			4.4.1.1: Pluripotent cells
			4.4.1.2: Mesenchymal-derived stem cells
			4.4.1.3: Progenitor cells
		4.4.2: Extracellular Matrix Regulation of Cardiovascular Development and Regeneration
			4.4.2.1: Decellularized tissue
			4.4.2.2: Natural extracellular matrices
			4.4.2.3: Synthetic matrices
			4.4.2.4: Oxygen tension and mechanotransduction
		4.4.3: BioMEMS
			4.4.3.1: Microfluidic platforms
			4.4.3.2: Micropatterned tools
		4.4.4: 3D Printing Technology
	4.5: Conclusions and Future Directions
Chapter 5: Mechanotransduction in Heart Formation
	5.1: Introduction: Blood Flow Dynamics and Mechanotransduction
		5.1.1: Mechanical Stimuli in the Cardiovascular System
		5.1.2: Sensing Blood Flow
		5.1.3: Responses to Blood Flow
	5.2: Cardiovascular Development
		5.2.1: Heart Formation
		5.2.2: Heart Malformation
	5.3: Effect of Blood Flow on Cardiac Formation
		5.3.1: Animal Models of Cardiac Development
		5.3.2: Early Embryonic Cardiac Remodeling in Response to Altered Hemodynamics
			5.3.2.1: Effects typically associated with altered wall shear stress
			5.3.2.2: Effects typically associated with altered blood pressure
		5.3.3: Cardiac Malformation Phenotypes after Hemodynamic Interventions
	5.4: Conclusions
Chapter 6: Mechanotransduction in Cardiovascular Development and Regeneration: A Genetic Zebrafish Model
	6.1: Introduction of Zebrafish as a Cardiovascular Model
	6.2: ECG in Zebrafish
	6.3: Mechanosensitive Pathways Modulate Vascular Development and Regeneration in Zebrafish
		6.3.1: Notch Signaling in Vascular Regeneration
		6.3.2: PKCε/PFKFB3 Pathway in Vascular Regeneration
		6.3.3: The Wnt/Ang-2 Pathway in Vascular Development and Regeneration
	6.4: Hemodynamic Fluid Force Promotes Cardiac Development via Mechanosensitive Notch Signaling in Zebrafish
	6.5: Future Perspective
		6.5.1: The Regulation of Metabolic Pathways by Mechanical Forces
		6.5.2: Interaction and Synergy of Mechanosensitive Pathways
		6.5.3: Mechanotransduction of Different Mechanical Forces in Cardiac Morphogenesis
	6.6: Conclusion and Summary
Chapter 7: Mechanosensitive MicroRNAs in Health and Disease
	7.1: Introduction
	7.2: MicroRNA in Hemodynamics Sensing
	7.3: MicroRNA in Extracellular Matrix Regulation
	7.4: MicroRNA in Stretch Sensing
	7.5: MicroRNA in Additional Diseases
	7.6: Targeting Dysregulated Mechanosensitive MicroRNAs in Diseases
Chapter 8: Biomechanics in Cardiac Development Using 4D Light-Sheet Imaging
	8.1: Introduction
		8.1.1: Hemodynamic Shear Stress
		8.1.2: Cardiac Trabeculation
		8.1.3: Zebrafish as a Model Animal
	8.2: Light-Sheet Technology
		8.2.1: Introduction of Light-Sheet Imaging
		8.2.2: Application of Traditional Light-Sheet Imaging
		8.2.3: 4D Methods to Image in vivo Zebrafish Cardiac Mechanics and Trabeculation
	8.3: Quantification of Hemodynamic Shear Stress
		8.3.1: Introduction of CFD
		8.3.2: Combination of Light-Sheet Imaging and CFD
		8.3.3: Application of Zebrafish Cardiac Mechanics and Trabeculation: Morphology
	8.4: Mechanobiology of Zebrafish Trabeculation
		8.4.1: Introduction to Notch Signaling
		8.4.2: Mechanotransduction of Notch, Including in vitro Cell Studies
		8.4.3: Applications of Different Types of Shear Stress for Ventricular Morphology
		8.4.4: Notch Signaling for Trabeculation
		8.4.5: Link Hemodynamic Shear Stress and Trabeculation: Pattern of Trabeculae
Index




نظرات کاربران