دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Ron C. L’Esteve
سری:
ISBN (شابک) : 9781484271827, 9781484271810
ناشر: Apress
سال نشر: 2021
تعداد صفحات: 0
زبان: English
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 56 مگابایت
در صورت تبدیل فایل کتاب Modern ELT, DevOps, and Analytics on the Azure Cloud Platform به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ELT مدرن، DevOps و Analytics در پلتفرم ابری Azure نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Table of Contents About the Author About the Technical Reviewer Acknowledgments Introduction Part I: Getting Started Chapter 1: The Tools and Prerequisites Master the Traditional Microsoft Business Intelligence Stack Understand Azure’s Modern Enterprise Data and Analytics Platform Understand How to Manage Big Data with Azure Understand the Fundamental Requirements for the Data Engineer Associate Expand Your Knowledge Across Azure Specialties Be Able to Address the Business Value of the Azure Data Platform Get Hands-On with Azure Data Engineering Through Azure Portal Azure Services Covered in This Book Data Lake Storage Gen2 Data Factory Ingest and Load Mapping Data Flows for Transformation and Aggregation Wrangling Data Flows Schedule and Monitor ADF Limitations Databricks Synapse Analytics DevOps CI/CD IoT Hub Stream Analytics Power BI Purview Snowflake SQL Database Purchasing Models (SQL DTU vs. vCore Database) Deployment Models Service Tiers Cosmos DB Relevant Azure Services Not Covered Analysis Services Cognitive Services Decision Language Speech Vision Search Azure Machine Learning Supervised Learning Unsupervised Learning Reinforcement Learning Monitor Log Analytics Event Hubs Data Share Logic Apps Power Apps App Service SQL Managed Instance Data Box Data Sync Data Gateway Cost Management + Billing Digital Twins Mobile Networking Security Identity Kubernetes Functions HVR Real-Time Data Replication Summary Chapter 2: Data Factory vs. SSIS vs. Databricks Choosing the Right Data Integration Tool When to Use Azure Data Factory, Azure Databricks, or Both Summary Chapter 3: Design a Data Lake Storage Gen2 Account Data Lake Layers Environments Storage Accounts File Systems Zones, Directories, and Files Zones Directories (Folders) Files Security Control Plane Permissions Data Plane Permissions POSIX-Like Access Control Lists Shared Access Signature Data Encryption Network Transport Summary Part II: Azure Data Factory for ELT Chapter 4: Dynamically Load a SQL Database to Data Lake Storage Gen2 Azure Prerequisite Resources Prepare and Verify SQL Server Database Objects Prepare and Verify Azure SQL Database Objects Prepare an Azure Data Lake Storage Gen2 Container Create Azure Data Factory Pipeline Resources Create a Self-Hosted Integration Runtime Create Linked Services Create Datasets DS_ADLS2 DS_SQLSERVER DS_ASQLDB_PIPELINE_PARAMETER Create Azure Data Factory Pipelines P_Insert_Base_Table_Info P_SQL_to_ADLS Run the Data Factory Pipeline and Verify Azure Data Lake Storage Gen2 Objects Summary Chapter 5: Use COPY INTO to Load a Synapse Analytics Dedicated SQL Pool Features of the COPY INTO Command Data Preparation Tips Tip #1: Remove Spaces from the Column Names Tip #2: Convert VARCHAR(MAX) to VARCHAR(4000) COPY INTO Using a Parquet File COPY INTO Using a CSV File Using COPY INTO from Data Factory Summary Chapter 6: Load Data Lake Storage Gen2 Files into a Synapse Analytics Dedicated SQL Pool Recreate the Pipeline Parameter Table Create the Datasets DS_ADLS_TO_SYNAPSE DS_ADLS_TO_SYNAPSE_MI DS_SYNAPSE_ANALYTICS_DW Create the Pipeline Choose the Copy Method BULK INSERT PolyBase Copy Command Summary Chapter 7: Create and Load Synapse Analytics Dedicated SQL Pool Tables Dynamically Dynamically Create and Load New Tables Using an ADF Pre-copy Script Dynamically Truncate and Load Existing Tables Using an ADF Pre-copy Script Dynamically Drop, Create, and Load Tables Using a Stored Procedure Summary Chapter 8: Build Custom Logs in SQL Database for Pipeline Activity Metrics Option 1: Create a Stored Procedure Activity Option 2: Create a CSV Log File in Data Lake Storage Gen2 Option 3: Create a Log Table in Azure SQL Database Summary Chapter 9: Capture Pipeline Error Logs in SQL Database Create a Parameter Table Create a Log Table Create an Errors Table Create a Stored Procedure to Update the Log Table Create a Stored Procedure to Update the Errors Table Create a Source Error Add Records to a Parameter Table Verify the Azure Data Lake Storage Gen2 Folders and Files Configure the Pipeline Lookup Activity Configure the Pipeline ForEach Loop Activity Configure a Stored Procedure to Update the Log Table Configure a Stored Procedure to Update the Errors Table Run the Pipeline Verify the Results Other ADF Logging Options Summary Chapter 10: Dynamically Load a Snowflake Data Warehouse Linked Services and Datasets Base Linked Services Datasets Snowflake Control Database and Tables Pipelines Step 1: Design and Execute an ADF Pipeline to Load Azure SQL Database to Data Lake Storage Gen2 Step 2: Design the Data Lake Storage Gen2 to Snowflake ADF Pipeline Option 1: ADF Pipeline to Load ADLS Gen2 to Snowflake Using Azure Databricks Option 2: ADF Pipeline to Load ADLS Gen2 to Snowflake Using ADF Copy Activity Option 3: ADF Pipeline to Load ADLS Gen2 to Snowflake Using Mapping Data Flows Comparing the Various ADLS Gen2 to Snowflake Ingestion Options Swim Lanes Data Validation Summary Chapter 11: Mapping Data Flows for Data Warehouse ETL Modern Data Warehouse Creating the Base Azure Data Resources Slowly Changing Dimension Type I Create a Data Factory Pipeline and Datasets Create a Data Factory Mapping Data Flow Exists LookupDates SetAttributes AlterRows sink1 Updating a Record Inserting a Record Summary Chapter 12: Aggregate and Transform Big Data Using Mapping Data Flows Add Files and Folders to Azure Data Lake Storage Gen2 File Size Folder Structure Create Azure Data Factory Resources Create the Mapping Data Flow Regular Expressions (Regex) Soundex RANK Function DENSE_RANK Function ROW_NUMBER Function Summary Chapter 13: Incrementally Upsert Data Create a Parameter Table Create a Source Query for the ADF Pipeline Add the ADF Datasets Azure SQL Database Azure Data Lake Storage Gen2 Azure Synapse Analytics DW Create the ADF Pipeline Add a Lookup Activity to Get the List of Tables Add a ForEach Activity to Iterate and Copy Each Table Mapping Data Flow for SQL to Lake Incremental ADF Pipeline Round Robin Hash Dynamic Range Fixed Range Key Mapping Data Flow to Incrementally Upsert from Lake to Synapse Analytics DW Run the ADF Pipeline Verify Incremental SQL to Lake Pipeline Results Verify Incremental Upsert Lake to Synapse ADF Pipeline Results Verify Source SQL Record Count Verify Lake Folder and Parquet File Path Verify Destination Synapse Record Count Insert a Source SQL Record Verify Incremental SQL to Lake ADF Pipeline Results Verify Incremental Upsert Lake to Synapse ADF Pipeline Results Verify Destination Synapse Analytics DW Record Count Update a Source SQL Record Verify Destination Synapse Analytics DW Record Count Summary Chapter 14: Load Excel Sheets into Azure SQL Database Tables Prerequisites Create an Excel Spreadsheet Upload to Azure Data Lake Storage Gen2 Create Linked Services and Datasets Create a Pipeline to Load Multiple Excel Sheets in a Spreadsheet into a Single Azure SQL Table Create a Pipeline to Load Multiple Excel Sheets in a Spreadsheet into Multiple Azure SQL Tables Summary Chapter 15: Delta Lake Why an ACID Delta Lake Prerequisites Create and Insert into Delta Lake Update Delta Lake Delete from Delta Lake Explore Delta Logs Insert Update Delete Summary Part III: Real-Time Analytics in Azure Chapter 16: Stream Analytics Anomaly Detection Prerequisites Create an Azure Stream Analytics Job Create an IoT Hub Create a Power BI Service Download the Device Simulator Create a Stream Analytics Input and Output Add Stream Input Add Stream Output Write the Stream Analytics Query Start the Stream Analytics Job Create a Real-Time Power BI Dashboard Create a Dataset Create a Dashboard Add a Tile Run the Device Simulator Monitor Real-Time Power BI Streaming Summary Chapter 17: Real-Time IoT Analytics Using Apache Spark Prerequisites Create an IoT Hub Create a Databricks Cluster Install Maven Library Create a Notebook and Run Structured Streaming Queries Configure Notebook Connections Start the Structured Stream Start the IoT Device Simulator Display the Real-Time Streaming Data Create a Spark SQL Table Write the Stream to a Delta Table Summary Chapter 18: Azure Synapse Link for Cosmos DB Create an Azure Cosmos DB Account Enable Azure Synapse Link Create a Cosmos DB Container and Database Import Data into Azure Cosmos DB Create a Cosmos DB Linked Service in Azure Synapse Analytics Load and Query the Data Using Synapse Spark Summary Part IV: DevOps for Continuous Integration and Deployment Chapter 19: Deploy Data Factory Changes Prerequisites Create the DevOps Continuous Integration Build Pipeline Create the DevOps Continuous Deployment Release Pipeline Azure PowerShell Task to Stop Triggers ARM Template Deployment Task Azure PowerShell Task to Start Triggers Run the Release Pipeline Verify the Deployed Data Factory Resources Summary Chapter 20: Deploy a SQL Database Pre-Requisites Create a Visual Studio SQL Database Project Install Visual Studio GitHub Extension Import AdventureWorks Database Connect to GitHub Repo Source Control Check In Visual Studio Solution to GitHub Repo Install Azure Pipelines from GitHub Build CI Pipeline from GitHub Repo Release CD Pipeline from DevOps Artifact Repo Verify Deployed Azure SQL AdventureWorks Database Summary Part V: Advanced Analytics Chapter 21: Graph Analytics Using Apache Spark’s GraphFrame API Install JAR Library Load New Data Tables Load Data in a Databricks Notebook Build a Graph with Vertices and Edges Query the Graph Find Patterns with Motifs Discover Importance with PageRank Explore In-Degree and Out-Degree Metrics Run a Breadth-First Search Find Connected Components Summary Chapter 22: Synapse Analytics Workspaces Create a Synapse Analytics Workspace Explore Sample Data with Spark Query Data with SQL Create External Table with SQL Summary Chapter 23: Machine Learning in Databricks Create an MLflow Experiment Install the MLflow Library Create a Notebook Selective Logging Auto-logging Register a Model Summary Part VI: Data Governance Chapter 24: Purview for Data Governance Create Azure Purview Account Explore Azure Purview Create and Register Data Source Manage Credentials and Access Create a Scan Explore the Glossary Browse Assets Working with Purview Programmatically Summary Index