ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Modern Electrochemistry: Ionics

دانلود کتاب الکتروشیمی مدرن: یونیک

Modern Electrochemistry: Ionics

مشخصات کتاب

Modern Electrochemistry: Ionics

دسته بندی: علم شیمی
ویرایش: 2 
نویسندگان: ,   
سری:  
ISBN (شابک) : 030646909X 
ناشر:  
سال نشر: 1998 
تعداد صفحات: 825 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 27 مگابایت 

قیمت کتاب (تومان) : 33,000



کلمات کلیدی مربوط به کتاب الکتروشیمی مدرن: یونیک: شیمی و صنایع شیمیایی، الکتروشیمی



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 9


در صورت تبدیل فایل کتاب Modern Electrochemistry: Ionics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب الکتروشیمی مدرن: یونیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب الکتروشیمی مدرن: یونیک

محتوا: Conté: V. 1. Ionics ; V. 2A. مبانی الکترودیک ; V. 2B. الکترودیک در شیمی، مهندسی، زیست شناسی و علوم محیطی


توضیحاتی درمورد کتاب به خارجی

Content: Conté: V. 1. Ionics ; V. 2A. Fundamentals of electrodics ; V. 2B. Electrodics in chemistry, engineering, biology and environmental science



فهرست مطالب

Contents......Page 18
Nomenclature......Page 34
1.1. A State of Excitement......Page 40
1.2. Two Kinds of Electrochemistry......Page 42
1.3. Some Characteristics of Electrodics......Page 44
1.4.1. Interfaces in Contact with Solutions Are Always Charged......Page 45
1.4.2. The Continuous Flow of Electrons across an Interface: Electrochemical Reactions......Page 47
1.4.3. Electrochemical and Chemical Reactions......Page 48
1.5.1. Some Diagrammatic Presentations......Page 51
1.5.2. Some Examples of the Involvement of Electrochemistry in Other Sciences......Page 52
1.5.3. Electrochemistry as an Interdisciplinary Field, Distinct from Chemistry......Page 54
1.6. The Frontier in Ionics: Nonaqueous Solutions......Page 55
1.7. A New World of Rich Variety: Room-Temperature Molten Salts......Page 58
1.8. Electrochemical Determination of Radical Intermediates by Means of Infrared Spectroscopy......Page 59
1.9. Relay Stations Placed Inside Proteins Can Carry an Electric Current......Page 61
1.10. Speculative Electrochemical Approach to Understanding Metabolism......Page 63
1.11. The Electrochemistry of Cleaner Environments......Page 64
1.12.1. Significance of Interfacial Charge-Transfer Reactions......Page 66
1.12.2. The Relation between Three Major Advances in Science, and the Place of Electrochemistry in the Developing World......Page 67
Further Reading.......Page 71
2.1. Introduction......Page 74
2.2. Breadth of Solvation as a Field......Page 76
2.3.2. What Are Monte Carlo and Molecular Dynamics Calculations?......Page 78
2.3.3. Spectroscopic Approaches......Page 79
2.4. Structure of the Most Common Solvent, Water......Page 80
2.4.1. How Does the Presence of an Ion Affect the Structure of Neighboring Water?......Page 85
2.4.2. Size and Dipole Moment of Water Molecules in Solution......Page 87
2.4.3. The Ion–Dipole Model for Ion–Solvent Interactions......Page 88
2.5.1. Introduction......Page 89
2.5.2. Thermodynamic Approaches: Heats of Solvation......Page 90
2.5.3. Obtaining Experimental Values of Free Energies and Entropies of the Solvation of Salts......Page 92
2.6.1. Definition......Page 94
2.6.2. How Does One Obtain Individual Ionic Volume from the Partial Molar Volume of Electrolytes?......Page 95
2.6.3. Conway’s Successful Extrapolation......Page 96
2.7.1. Relation of Compressibility to Solvation......Page 97
2.7.2. Measuring Compressibility: How It Is Done......Page 99
2.8. Total Solvation Numbers of Ions in Electrolytes......Page 100
2.8.1. Ionic Vibration Potentials: Their Use in Obtaining the Difference of the Solvation Numbers of Two Ions in a Salt......Page 102
2.9.1. Hydration Numbers from Activity Coefficients......Page 107
2.10.1. The Mobility Method......Page 109
2.11.1. General......Page 111
2.11.2. IR Spectra......Page 112
2.11.3. The Neutron Diffraction Approach to Solvation......Page 116
2.11.4. To What Extent Do Raman Spectra Contribute to Knowledge of the Solvation Shell?......Page 122
2.11.5. Raman Spectra and Solution Structure......Page 123
2.11.6. Information on Solvation from Spectra Arising from Resonance in the Nucleus.......Page 124
Further Reading......Page 125
2.12.1. Dielectric Constant of Solutions......Page 126
2.12.2. How Does One Measure the Dielectric Constant of Ionic Solutions?......Page 131
Further Reading......Page 132
2.13. Ionic Hydration in the Gas Phase......Page 133
2.14.1. Introduction.......Page 137
2.15.1. Introduction......Page 138
2.15.2. Relative Heats of Solvation of Ions in the Hydrogen Scale......Page 139
2.15.3. Do Oppositely Charged Ions of Equal Radii Have Equal Heats of Solvation?......Page 140
2.15.4. The Water Molecule as an Electrical Quadrupole......Page 141
2.15.5. The Ion–Quadrupole Model of Ion–Solvent Interactions......Page 142
2.15.6. Ion–Induced Dipole Interactions in the Primary Solvation Sheath......Page 145
2.15.7. How Good Is the Ion–Quadrupole Theory of Solvation?......Page 146
2.15.8. How Can Temperature Coefficients of Reversible Cells Be Used to Obtain Ionic Entropies?......Page 149
2.15.10. Model Calculations of Hydration Heats......Page 153
2.15.11. Heat Changes Accompanying Hydration......Page 156
2.15.13. Entropy Changes Accompanying Hydration......Page 165
2.15.14. Is There a Connection between the Entropy of Solvation and the Heats of Hydration?......Page 177
2.16.1. Introduction......Page 178
2.16.2. Dynamic Properties of Water and Their Effect on Hydration Numbers......Page 180
2.16.3. A Reconsideration of the Methods for Determining the Primary Hydration Numbers Presented in Section 2.15......Page 181
2.16.4. Why Do Hydration Heats of Transition-Metal Ions Vary Irregularly with Atomic Number?......Page 184
Further Reading......Page 191
2.17.1. General......Page 192
2.17.3. Computational Approaches to Ionic Solvation......Page 193
2.17.4. Basic Equations Used in Molecular Dynamics Calculations......Page 194
2.18. Computation of Ion–Water Clusters in the Gas Phase......Page 196
2.19. Solvent Dynamic Simulations for Aqueous Solutions......Page 202
2.20.1. The Problem......Page 205
2.20.2. Change in Solubility of a Nonelectrolyte Due to Primary Solvation......Page 206
2.20.3. Change in Solubility Due to Secondary Solvation......Page 207
2.20.4. Net Effect on Solubility of Influences from Primary and Secondary Solvation......Page 210
2.20.5. Cause of Anomalous Salting In......Page 212
2.20.6. Hydrophobic Effect in Solvation......Page 214
Further Reading......Page 217
2.21.1. Phenomenology......Page 218
2.21.2. Mechanistic Thoughts......Page 220
2.22.1. Electrostrictive Pressure near an Ion in Solution......Page 224
2.22.3. Dependence of Compressibility on Pressure......Page 226
2.22.4. Volume Change and Where It Occurs in Electrostriction......Page 228
2.23.1. Introduction......Page 229
2.23.3. Hydration of Cross-Linked Polymers (e.g., Polystyrene Sulfonate)......Page 230
2.24. Hydration in Biophysics......Page 231
2.24.1. A Model for Hydration and Diffusion of Polyions......Page 232
2.24.3. Protein Dynamics as a Function of Hydration......Page 233
2.24.4. Dielectric Behavior of DNA......Page 234
2.25.1. Does Water in Biological Systems Have a Different Structure from Water In Vitro?......Page 236
2.25.3. Molecular Dynamic Simulations of Biowater......Page 237
2.26. Some Directions of Future Research in Ion–Solvent Interactions......Page 238
2.27.1. Hydration of Simple Cations and Anions......Page 240
2.27.4. Functions of Hydration......Page 242
Appendix 2.1. The Born Equation......Page 243
Appendix 2.2. Interaction between an Ion and a Dipole......Page 246
Appendix 2.3. Interaction between an Ion and a Water Quadrupole......Page 248
3.2.1. Ionic Crystals Form True Electrolytes......Page 264
3.2.2. Potential Electrolytes: Nonionic Substances That React with the Solvent to Yield Ions......Page 265
3.2.3. An Obsolete Classification: Strong and Weak Electrolytes......Page 267
3.2.4. The Nature of the Electrolyte and the Relevance of Ion–Ion Interactions......Page 268
3.3.1. A Strategy for a Quantitative Understanding of Ion–Ion Interactions......Page 269
3.3.2. A Prelude to the Ionic-Cloud Theory......Page 271
3.3.3. Charge Density near the Central Ion Is Determined by Electrostatics: Poisson’s Equation......Page 274
3.3.4. Excess Charge Density near the Central Ion Is Given by a Classical Law for the Distribution of Point Charges in a Coulombic Field......Page 275
3.3.5. A Vital Step in the Debye–Hückel Theory of the Charge Distribution around Ions: Linearization of the Boltzmann Equation......Page 276
3.3.6. The Linearized Poisson–Boltzmann Equation......Page 277
3.3.7. Solution of the Linearized P–B Equation......Page 278
3.3.8. The Ionic Cloud around a Central Ion......Page 281
3.3.9. Contribution of the Ionic Cloud to the Electrostatic Potential ψ[sub(r)] at a Distance r from the Central Ion......Page 286
3.3.10. The Ionic Cloud and the Chemical-Potential Change Arising from Ion-Ion Interactions......Page 289
3.4.1. Evolution of the Concept of an Activity Coefficient......Page 290
3.4.2. The Physical Significance of Activity Coefficients......Page 292
3.4.3. The Activity Coefficient of a Single Ionic Species Cannot Be Measured......Page 294
3.4.4. The Mean Ionic Activity Coefficient......Page 295
3.4.5. Conversion of Theoretical Activity-Coefficient Expressions into a Testable Form......Page 296
3.4.6. Experimental Determination of Activity Coefficients......Page 299
3.4.7. How to Obtain Solute Activities from Data on Solvent Activities......Page 300
3.4.8. A Second Method to Obtain Solute Activities: From Data on Concentration Cells and Transport Numbers......Page 302
Further Reading......Page 306
3.5.1. How Well Does the Debye–Hückel Theoretical Expression for Activity Coefficients Predict Experimental Values?......Page 307
3.5.2. Ions Are of Finite Size, They Are Not Point Charges......Page 312
3.5.3. The Theoretical Mean Ionic-Activity Coefficient in the Case of Ionic Clouds with Finite-Sized Ions......Page 316
3.5.5. Comparison of the Finite-Ion-Size Model with Experiment......Page 319
3.5.6. The Debye–Hückel Theory of Ionic Solutions: An Assessment......Page 325
3.5.7. Parentage of the Theory of Ion–Ion Interactions......Page 331
3.6.1. Effect of Water Bound to Ions on the Theory of Deviations from Ideality......Page 332
3.6.2. Quantitative Theory of the Activity of an Electrolyte as a Function of the Hydration Number......Page 334
3.6.3. The Water Removal Theory of Activity Coefficients and Its Apparent Consistency with Experiment at High Electrolytic Concentrations......Page 336
3.7. The So-called “Rigorous” Solutions of the Poisson–Boltzmann Equation......Page 339
3.8.2. Probability of Finding Oppositely Charged Ions near Each Other......Page 343
3.8.3. The Fraction of Ion Pairs, According to Bjerrum......Page 346
3.8.4. The Ion-Association Constant K[sub(A)] of Bjerrum......Page 348
3.8.6. From Ion Pairs to Triple Ions to Clusters of Ions......Page 353
3.9. The Virial Coefficient Approach to Dealing with Solutions......Page 354
Further Reading......Page 357
3.10.1. The Monte Carlo Approach......Page 358
3.10.2. Molecular Dynamic Simulations......Page 359
3.10.3. The Pair-Potential Interaction......Page 360
3.10.4. Experiments and Monte Carlo and MD Techniques......Page 361
Further Reading......Page 362
3.11.2. Obtaining Solution Properties from Correlation Functions......Page 363
3.12. How Far Has the MSA Gone in the Development of Estimation of Properties for Electrolyte Solutions?......Page 365
3.13. Computations of Dimer and Trimer Formation in Ionic Solution......Page 368
3.14. More Detailed Models......Page 372
Further Reading......Page 375
3.15. Spectroscopic Approaches to the Constitution of Electrolytic Solutions......Page 376
3.15.1 Visible and Ultraviolet Absorption Spectroscopy......Page 377
3.15.2 Raman Spectroscopy......Page 378
3.15.4 Nuclear Magnetic Resonance Spectroscopy......Page 379
3.16. Ionic Solution Theory in the Twenty-First Century......Page 380
Appendix 3.1. Poisson’s Equation for a Spherically Symmetrical Charge Distribution......Page 383
Appendix 3.3. Derivation of the Result,..............Page 384
Appendix 3.4. To Show That the Minimum in the P[sub(r)] versus r Curve Occurs at r=λ/2......Page 385
Appendix 3.6. Relation between Calculated and Observed Activity Coefficients......Page 386
4.1. Introduction......Page 400
4.2.1. The Driving Force for Diffusion......Page 402
4.2.2. The “Deduction” of an Empirical Law: Fick’s First Law of Steady-State Diffusion......Page 406
4.2.3. The Diffusion Coefficient D......Page 409
4.2.4. Ionic Movements: A Case of the Random Walk......Page 411
4.2.5. The Mean Square Distance Traveled in a Time t by a Random-Walking Particle......Page 413
4.2.6. Random-Walking Ions and Diffusion: The Einstein–Smoluchowski Equation......Page 417
4.2.7. The Gross View of Nonsteady-State Diffusion......Page 419
4.2.8. An Often-Used Device for Solving Electrochemical Diffusion Problems: The Laplace Transformation......Page 421
4.2.9. Laplace Transformation Converts the Partial Differential Equation into a Total Differential Equation......Page 424
4.2.10. Initial and Boundary Conditions for the Diffusion Process Stimulated by a Constant Current (or Flux)......Page 425
4.2.11. Concentration Response to a Constant Flux Switched On at t = 0......Page 429
4.2.12. How the Solution of the Constant-Flux Diffusion Problem Leads to the Solution of Other Problems......Page 435
4.2.13. Diffusion Resulting from an Instantaneous Current Pulse......Page 440
4.2.14. Fraction of Ions Traveling the Mean Square Distance in the Einstein- Smoluchowski Equation......Page 444
4.2.15. How Can the Diffusion Coefficient Be Related to Molecular Quantities?......Page 450
4.2.16. The Mean Jump Distance l, a Structural Question......Page 451
4.2.17. The Jump Frequency, a Rate-Process Question......Page 452
4.2.18. The Rate-Process Expression for the Diffusion Coefficient......Page 453
4.2.19. Ions and Autocorrelation Functions......Page 454
4.2.20. Diffusion: An Overall View......Page 457
Further Reading......Page 459
4.3.1. Creation of an Electric Field in an Electrolyte......Page 460
4.3.2. How Do Ions Respond to the Electric Field?......Page 463
4.3.3. The Tendency for a Conflict between Electroneutrality and Conduction......Page 465
4.3.4. Resolution of the Electroneutrality-versus-Conduction Dilemma: Electron- Transfer Reactions......Page 466
4.3.5. Quantitative Link between Electron Flow in the Electrodes and Ion Flow in the Electrolyte: Faraday’s Law......Page 467
4.3.6. The Proportionality Constant Relating Electric Field and Current Density: Specific Conductivity......Page 468
4.3.7. Molar Conductivity and Equivalent Conductivity......Page 471
4.3.8. Equivalent Conductivity Varies with Concentration......Page 473
4.3.9. How Equivalent Conductivity Changes with Concentration: Kohlrausch’s Law......Page 477
4.3.10. Vectorial Character of Current: Kohlrausch’s Law of the Independent Migration of Ions......Page 478
4.4.1. Ionic Movements under the Influence of an Applied Electric Field......Page 481
4.4.2. Average Value of the Drift Velocity......Page 482
4.4.3. Mobility of Ions......Page 483
4.4.4. Current Density Associated with the Directed Movement of Ions in Solution, in Terms of Ionic Drift Velocities......Page 485
4.4.5. Specific and Equivalent Conductivities in Terms of Ionic Mobilities......Page 486
4.4.6. The Einstein Relation between the Absolute Mobility and the Diffusion Coefficient......Page 487
4.4.7. Drag (or Viscous) Force Acting on an Ion in Solution......Page 491
4.4.8. The Stokes–Einstein Relation......Page 493
4.4.9. The Nernst–Einstein Equation......Page 495
4.4.10. Some Limitations of the Nernst–Einstein Relation......Page 496
4.4.11. The Apparent Ionic Charge......Page 498
4.4.12. A Very Approximate Relation between Equivalent Conductivity and Viscosity: Walden’s Rule......Page 500
4.4.13. The Rate-Process Approach to Ionic Migration......Page 503
4.4.14. The Rate-Process Expression for Equivalent Conductivity......Page 506
4.4.15. The Total Driving Force for Ionic Transport: The Gradient of the Electrochemical Potential......Page 510
4.5.1. The Drift of One Ionic Species May Influence the Drift of Another......Page 515
4.5.2. A Consequence of the Unequal Mobilities of Cations and Anions, the Transport Numbers......Page 516
4.5.3. The Significance of a Transport Number of Zero......Page 519
4.5.4. The Diffusion Potential, Another Consequence of the Unequal Mobilities of Ions......Page 522
4.5.5. Electroneutrality Coupling between the Drifts of Different Ionic Species......Page 526
4.5.6. How to Determine Transport Number......Page 527
4.5.7. The Onsager Phenomenological Equations......Page 533
4.5.8. An Expression for the Diffusion Potential......Page 535
4.5.9. The Integration of the Differential Equation for Diffusion Potentials: The Planck–Henderson Equation......Page 539
4.5.10. A Bird’s Eye View of Ionic Transport......Page 542
4.6.1. Concentration Dependence of the Mobility of Ions......Page 544
4.6.2. Ionic Clouds Attempt to Catch Up with Moving Ions......Page 546
4.6.3. An Egg-Shaped Ionic Cloud and the “Portable” Field on the Central Ion......Page 547
4.6.4. A Second Braking Effect of the Ionic Cloud on the Central Ion: The Electrophoretic Effect......Page 548
4.6.5. The Net Drift Velocity of an Ion Interacting with Its Atmosphere......Page 549
4.6.6. Electrophoretic Component of the Drift Velocity......Page 550
4.6.8. Decay Time of an Ion Atmosphere......Page 551
4.6.10. Magnitude of the Relaxation Force and the Relaxation Component of the Drift Velocity......Page 553
4.6.11. Net Drift Velocity and Mobility of an Ion Subject to Ion–Ion Interactions......Page 556
4.6.12. The Debye–Hückel–Onsager Equation......Page 557
4.6.13. Theoretical Predictions of the Debye–Hückel–Onsager Equation versus the Observed Conductance Curves......Page 559
4.6.14. Changes to the Debye–Hückel–Onsager Theory of Conductance......Page 561
4.7.1. Definition of Relaxation Processes......Page 565
4.7.2. Dissymmetry of the Ionic Atmosphere......Page 567
4.7.3. Dielectric Relaxation in Liquid Water......Page 569
4.7.4. Effects of Ions on the Relaxation Times of the Solvents in Their Solutions......Page 571
Further Reading......Page 572
4.8.1. Water Is the Most Plentiful Solvent......Page 573
4.8.2. Water Is Often Not an Ideal Solvent......Page 574
4.8.3. More Advantages and Disadvantages of Nonaqueous Electrolyte Solutions......Page 575
4.8.4. The Debye–Hückel–Onsager Theory for Nonaqueous Solutions......Page 576
4.8.5. What Type of Empirical Data Are Available for Nonaqueous Electrolytes?......Page 577
4.8.6. The Solvent Effect on Mobility at Infinite Dilution......Page 583
4.8.7. Slope of the Λ versus c[sup(1/2)] Curve as a Function of the Solvent......Page 584
4.8.8. Effect of the Solvent on the Concentration of Free Ions: Ion Association......Page 586
4.8.9. Effect of Ion Association on Conductivity......Page 587
4.8.10. Ion-Pair Formation and Non-Coulombic Forces......Page 590
4.8.11. Triple Ions and Higher Aggregates Formed in Nonaqueous Solutions......Page 591
4.8.12. Some Conclusions about the Conductance of Nonaqueous Solutions of True Electrolytes......Page 592
4.9.1. Why Some Polymers Become Electronically Conducting Polymers......Page 593
4.9.2. Applications of Electronically Conducting Polymers in Electrochemical Science......Page 598
4.9.3. Summary......Page 600
4.10. A Brief Rerun through the Conduction Sections......Page 602
Further Reading......Page 603
4.11.1. The Proton as a Different Sort of Ion......Page 604
4.11.2. Protons Transport Differently......Page 606
4.11.3. The Grotthuss Mechanism......Page 608
4.11.4. The Machinery of Nonconformity: A Closer Look at How the Proton Moves......Page 610
4.11.5. Penetrating Energy Barriers by Means of Proton Tunneling......Page 614
4.11.6. One More Step in Understanding Proton Mobility: The Conway, Bockris, and Linton (CBL) Theory......Page 615
4.11.7. How Well Does the Field-Induced Water Reorientation Theory Conform with the Experimental Facts?......Page 619
Further Reading......Page 620
Appendix 4.1. The Mean Square Distance Traveled by a Random-Walking Particle......Page 621
Appendix 4.3. The Derivation of Equations (4.279) and (4.280)......Page 623
Appendix 4.4. The Derivation of Equation (4.354)......Page 625
5.1.1. The Limiting Case of Zero Solvent: Pure Electrolytes......Page 640
5.1.2. Thermal Loosening of an Ionic Lattice......Page 641
5.1.4. Liquid Electrolytes Are Ionic Liquids......Page 642
5.1.5. Fundamental Problems in Pure Liquid Electrolytes......Page 644
Further Reading......Page 649
5.2.2. The Need to Pour Empty Space into a Fused Salt......Page 650
5.2.3. How to Derive Short-Range Structure in Molten Salts from Measurements Using X-ray and Neutron Diffraction......Page 651
5.2.4. Applying Diffraction Theory to Obtain the Pair Correlation Functions in Molten Salts......Page 655
5.2.5. Use of Neutrons in Place of X-rays in Diffraction Experiments......Page 657
5.2.6. Simple Binary Molten Salts in the Light of the Results of X-ray and Neutron Diffraction Work......Page 658
5.2.8. Modeling Molten Salts......Page 660
5.3.1. Introduction......Page 662
5.3.2. Woodcock and Singer’s Model......Page 663
5.3.3. Results First Computed by Woodcock and Singer......Page 664
5.3.4. A Molecular Dynamic Study of Complexing......Page 666
5.4.1. The Hole Model: A Fused Salt Is Represented as Full of Holes as a Swiss Cheese......Page 671
5.5.1. An Expression for the Probability That a Hole Has a Radius between r and r + dr......Page 673
5.5.2. An Ingenious Approach to Determine the Work of Forming a Void of Any Size in a Liquid......Page 676
5.5.3. The Distribution Function for the Sizes of the Holes in a Liquid Electrolyte......Page 678
5.5.4. What Is the Average Size of a Hole in the Fürth Model?......Page 679
5.5.5. Glass-Forming Molten Salts......Page 681
Further Reading......Page 684
5.6.1. Simplifying Features of Transport in Fused Salts......Page 685
5.6.2. Diffusion in Fused Salts......Page 686
5.6.3. Viscosity of Molten Salts......Page 690
5.6.4. Validity of the Stokes–Einstein Relation in Ionic Liquids......Page 693
5.6.5. Conductivity of Pure Liquid Electrolytes......Page 695
5.6.6. The Nernst–Einstein Relation in Ionic Liquids......Page 699
5.6.7. Transport Numbers in Pure Liquid Electrolytes......Page 704
Further Reading......Page 712
5.7.1. A Simple Approach: Holes in Molten Salts and Transport Processes......Page 713
5.7.2. What Is the Mean Lifetime of Holes in the Molten Salt Model?......Page 715
5.7.3. Viscosity in Terms of the “Flow of Holes”......Page 716
5.7.4. The Diffusion Coefficient from the Hole Model......Page 717
5.7.5. Which Theoretical Representation of the Transport Process in Molten Salts Can Rationalize the Relation E[sup(≠)] = 3.74RT[sub(m.p.)]?......Page 719
5.7.6. An Attempt to Rationalize E[sup(≠)][sub(D) = E[sup(≠)][sub(η)] = 3.74RT[sub(m.p.)]......Page 720
5.7.7. How Consistent with Experimental Values Is the Hole Model for Simple Molten Salts?......Page 722
5.7.8. Ions May Jump into Holes to Transport Themselves: Can They Also Shuffle About?......Page 725
5.7.9. Swallin’s Model of Small Jumps......Page 730
Further Reading......Page 732
5.8.1. Nonideal Behavior of Mixtures......Page 733
5.8.2. Interactions Lead to Nonideal Behavior......Page 734
5.8.3. Complex Ions in Fused Salts......Page 735
5.8.4. An Electrochemical Approach to Evaluating the Identity of Complex Ions in Molten Salt Mixtures......Page 736
5.8.5. Can One Determine the Lifetime of Complex Ions in Molten Salts?......Page 738
5.9. Spectroscopic Methods Applied to Molten Salts......Page 741
5.9.1. Raman Studies of Al Complexes in Low-Temperature “Molten” Systems......Page 744
5.9.2. Other Raman Studies of Molten Salts......Page 745
5.9.4. Nuclear Magnetic Resonance and Other Spectroscopic Methods Applied to Molten Salts......Page 748
Further Reading......Page 752
5.10.1. Facts and a Mild Amount of Theory......Page 753
5.10.2. A Model for Electronic Conductance in Molten Salts......Page 754
5.11. Molten Salts as Reaction Media......Page 756
Further Reading......Page 758
5.12. The New Room-Temperature Liquid Electrolytes......Page 759
5.12.1. Reaction Equilibria in Low-Melting-Point Liquid Electrolytes......Page 760
5.12.3. Organic Solutes in Liquid Electrolytes at Low Temperatures......Page 761
5.12.4. Aryl and Alkyl Quaternary Onium Salts......Page 762
Further Reading......Page 764
5.13.2. Pure Fused Nonmetallic Oxides Form Network Structures Like Liquid Water......Page 765
5.13.3. Why Does Fused Silica Have a Much Higher Viscosity Than Do Liquid Water and the Fused Salts?......Page 767
5.13.4. Solvent Properties of Fused Nonmetallic Oxides......Page 772
5.13.5. Ionic Additions to the Liquid-Silica Network: Glasses......Page 773
5.13.6. The Extent of Structure Breaking of Three-Dimensional Network Lattices and Its Dependence on the Concentration of Metal Ions Added to the Oxide......Page 775
5.13.7. Molecular and Network Models of Liquid Silicates......Page 777
5.13.8. Liquid Silicates Contain Large Discrete Polyanions......Page 779
5.13.9. The “Iceberg” Model......Page 784
5.13.11. Spectroscopic Evidence for the Existence of Various Groups, Including Anionic Polymers, in Liquid Silicates and Aluminates......Page 785
5.13.12. Fused Oxide Systems and the Structure of Planet Earth......Page 788
5.13.13. Fused Oxide Systems in Metallurgy: Slags......Page 790
Further Reading......Page 792
Appendix 5.1. The Effective Mass of a Hole......Page 793
Appendix 5.2. Some Properties of the Gamma Function......Page 794
Appendix 5.3. The Kinetic Theory Expression for the Viscosity of a Fluid......Page 795
Supplemental References......Page 808
A......Page 810
C......Page 811
D......Page 812
E......Page 814
F......Page 815
H......Page 816
I......Page 817
K......Page 818
M......Page 819
N......Page 820
P......Page 821
R......Page 822
S......Page 823
T......Page 824
Z......Page 825




نظرات کاربران