دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: پایگاه داده ها ویرایش: 13 نویسندگان: Jeffrey A. Hoffer, V. Ramesh, Heikki Topi سری: ISBN (شابک) : 0134773659, 9780134773650 ناشر: Pearson سال نشر: 2017 تعداد صفحات: 593 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 156 مگابایت
در صورت تبدیل فایل کتاب Modern Database Management به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مدیریت پایگاه داده مدرن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
برای دوره های کارشناسی و کارشناسی ارشد مدیریت پایگاه داده. ارائه آخرین اطلاعات در زمینه توسعه پایگاه داده. مدیریت پایگاه داده مدرن با تمرکز بر آنچه متخصصان پیشرو پایگاه داده می گویند مهمترین جنبه های توسعه پایگاه داده است، آموزش صحیح را ارائه می دهد و شامل موضوعاتی است که برای موفقیت عملی متخصصان پایگاه داده حیاتی است. این متن همچنین با ارائه تحقیقاتی که می تواند چیز بزرگ بعدی را در مدیریت پایگاه داده آشکار کند، دانشجویان را به آینده راهنمایی می کند. ویرایش یازدهم شامل بهروزرسانیهای کلی و مطالب گستردهای در زمینههایی است که به دلیل بهبود شیوههای مدیریتی، ابزارها و روششناسی طراحی پایگاه داده، و فناوری پایگاهداده در حال تغییر سریع هستند.
For undergraduate and graduate database management courses. Provide the latest information in database development. Focusing on what leading database practitioners say are the most important aspects to database development, Modern Database Management presents sound pedagogy and includes topics that are critical for the practical success of database professionals. This text also continues to guide students into the future by presenting research that could reveal the next big thing in database management. The eleventh edition contains general updates and expanded material in the areas undergoing rapid change due to improved managerial practices, database design tools and methodologies, and database technology.
Cover Title Page Copyright Page Brief Contents Contents Preface Acknowledgments Preface Part I: The Context of Database Management An Overview of Part I Chapter 1: The Database Environment and Development Process Learning Objectives Data Matter! Introduction Basic Concepts and Definitions Data Data versus Information Metadata Traditional File Processing Systems File Processing Systems at Pine Valley Furniture Company Disadvantages of File Processing Systems Program-Data Dependence Duplication of Data Limited Data Sharing Lengthy Development Times Excessive Program Maintenance The Database Approach Data Models Entities Relationships Relational Databases Database Management Systems Advantages of the Database Approach Program-Data Independence Planned Data Redundancy Improved Data Consistency Improved Data Sharing Increased Productivity of Application Development Enforcement of Standards Improved Data Quality Improved Data Accessibility and Responsiveness Reduced Program Maintenance Improved Decision Support Cautions about Database Benefits Costs and Risks of the Database Approach New, Specialized Personnel Installation and Management Cost and Complexity Conversion Costs Need for Explicit Backup and Recovery Organizational Conflict Integrated Data Management Framework Components of the Database Environment The Database Development Process Systems Development Life Cycle Planning—Enterprise Modeling Planning—Conceptual Data Modeling Analysis—Conceptual Data Modeling Design—Logical Database Design Design—Physical Database Design and Definition Implementation—Database Implementation Maintenance—Database Maintenance Alternative Information Systems Development Approaches Three-Schema Architecture for Database Development Managing the People Involved in Database Development Evolution of Database Systems 1960s 1970s 1980s 1990s 2000 and Beyond The Range of Database Applications Personal Databases Departmental Multi-Tiered Client/Server Databases Enterprise Applications Enterprise Systems Data Warehouses Data Lake Developing a Database Application for Pine Valley Furniture Company Database Evolution at Pine Valley Furniture Company Project Planning Analyzing Database Requirements Designing the Database Using the Database Administering the Database Future of Databases at Pine Valley Summary Key Terms Review Questions Problems and Exercises Field Exercises References Further Reading Web Resources Case: Forondo Artist Management Excellence Inc. Part II: Database Analysis and Logical Design An Overview of Part II Chapter 2: Modeling Data in the Organization Learning Objectives Introduction The E-R Model: An Overview Sample E-R Diagram E-R Model Notation Modeling the Rules of the Organization Overview of Business Rules The Business Rules Paradigm Scope of Business Rules Good Business Rules Gathering Business Rules Data Names and Definitions Data Names Data Definitions Good Data Definitions Modeling Entities and Attributes Entities Entity Type versus Entity Instance Entity Type versus System Input, Output, or User Strong versus Weak Entity Types Naming and Defining Entity Types Attributes Required versus Optional Attributes Simple versus Composite Attributes Single-valued versus Multivalued Attributes Stored versus Derived Attributes Identifier Attribute Naming and Defining Attributes Modeling Relationships Basic Concepts and Definitions in Relationships Attributes on Relationships Associative Entities Degree of a Relationship Unary Relationship Binary Relationship Ternary Relationship Attributes or Entity? Cardinality Constraints Minimum Cardinality Maximum Cardinality Some Examples of Relationships and Their Cardinalities A Ternary Relationship Modeling Time-Dependent Data Modeling Multiple Relationships Between Entity Types Naming and Defining Relationships E-R Modeling Example: Pine Valley Furniture Company Database Processing At Pine Valley Furniture Showing Product Information Showing Product Line Information Showing Customer Order Status Showing Product Sales Summary Key Terms Review Questions Problems and Exercises Field Exercises References Further Reading Web Resources Case: Forondo Artist Management Excellence Inc. Chapter 3: The Enhanced E-R Model Learning Objectives Introduction Representing Supertypes and Subtypes Basic Concepts and Notation An Example of a Supertype/Subtype Relationship Attribute Inheritance When to Use Supertype/Subtype Relationships Representing Specialization and Generalization Generalization Specialization Combining Specialization and Generalization Specifying Constraints in Supertype/Subtype Relationships Specifying Completeness Constraints Total Specialization Rule Partial Specialization Rule Specifying Disjointness Constraints Disjoint Rule Overlap Rule Defining Subtype Discriminators Disjoint Subtypes Overlapping Subtypes Defining Supertype/Subtype Hierarchies An Example of a Supertype/Subtype Hierarchy Summary of Supertype/Subtype Hierarchies EER Modeling Example: Pine Valley Furniture Company Entity Clustering Packaged Data Models A Revised Data Modeling Process with Packaged Data Models Packaged Data Model Examples Summary Key Terms Review Questions Problems and Exercises Field Exercises References Further Reading Web Resources Case: Forondo Artist Management Excellence Inc. Chapter 4: Logical Database Design and the Relational Model Learning Objectives Introduction The Relational Data Model Basic Definitions Relational Data Structure Relational Keys Properties of Relations Removing Multivalued Attributes from Tables Sample Database Integrity Constraints Domain Constraints Entity Integrity Referential Integrity Creating Relational Tables Well-Structured Relations Transforming EER Diagrams into Relations Step 1: Map Regular Entities Composite Attributes Multivalued Attributes Step 2: Map Weak Entities When to Create a Surrogate Key Step 3: Map Binary Relationships Map Binary One-to-Many Relationships Map Binary Many-to-Many Relationships Map Binary One-to-One Relationships Step 4: Map Associative Entities Identifier not Assigned Identifier Assigned Step 5: Map Unary Relationships Unary One-to-Many Relationships Unary Many-to-Many Relationships Step 6: Map Ternary (and n-ary) Relationships Step 7: Map Supertype/Subtype Relationships Summary of EER-to-Relational Transformations Introduction to Normalization Steps in Normalization Functional Dependencies and Keys Determinants Candidate Keys Normalization Example: Pine Valley Furniture Company Step 0: Represent the View in Tabular Form Step 1: Convert to First Normal Form Remove Repeating Groups Select the Primary Key Anomalies in 1NF Step 2: Convert to Second Normal Form Step 3: Convert to Third Normal Form Removing Transitive Dependencies Determinants and Normalization Step 4: Further Normalization Merging Relations An Example View Integration Problems Synonyms Homonyms Transitive Dependencies Supertype/Subtype Relationships A Final Step for Defining Relational Keys Summary Key Terms Review Questions Problems and Exercises Field Exercises References Further Reading Web Resources Case: Forondo Artist Management Excellence Inc. Part III: Database Implementation and Use An Overview of Part III Chapter 5: Introduction to SQL Learning Objectives Introduction Origins of the SQL Standard The SQL Environment SQL Data Types Defining A Database in SQL Generating SQL Database Definitions Creating Tables Creating Data Integrity Controls Changing Table Definitions Removing Tables Inserting, Updating, and Deleting Data Batch Input Deleting Database Contents Updating Database Contents Internal Schema Definition in RDBMSs Creating Indexes Processing Single Tables Clauses of the SELECT Statement Using Expressions Using Functions Using Wildcards Using Comparison Operators Using Null Values Using Boolean Operators Using Ranges for Qualification Using Distinct Values Using IN and NOT IN with Lists Sorting Results: The ORDER BY Clause Categorizing Results: The GROUP BY Clause Qualifying Results by Categories: The HAVING Clause Summary Key Terms Review Questions Problems and Exercises Field Exercises References Further Reading Web Resources Case: Forondo Artist Management Excellence Inc. Chapter 6: Advanced SQL Learning Objectives Introduction Processing Multiple Tables Equi-Join Natural Join Outer Join Sample Join Involving Four Tables Self-Join Subqueries Correlated Subqueries Using Derived Tables Combinings Queries Conditional Expressions More Complicated SQL Queries Tips for Developing Queries Guidelines for Better Query Design Using and Defining Views Materialized Views Triggers and Routines Triggers Routines and Other Programming Extensions Example Routine in Oracle’s PL/SQL Data Dictionary Facilities Recent Enhancements and Extensions to SQL Analytical and OLAP Functions New Temporal Features in SQL Other Enhancements Summary Key Terms Review Questions Problems and Exercises Field Exercises References Further Reading Web Resources Case: Forondo Artist Management Excellence Inc. Chapter 7: Databases in Applications Learning Objectives Location, Location, Location! Introduction Client/Server Architectures Databases in Three-Tier Applications A Java Web Application A Python Web Application Key Considerations in Three-Tier Applications Stored Procedures Transactions Database Connections Key Benefits of Three-Tier Applications Transaction Integrity Controlling Concurrent Access The Problem of Lost Updates Serializability Locking Mechanisms Locking Level Types of Locks Deadlock Managing Deadlock Versioning Managing Data Security in an Application Context Threats to Data Security Establishing Client/Server Security Server Security Network Security Application Security Issues in Three-Tier Client/Server Environments Data Privacy Summary Key Terms Review Questions Problems and Exercises Field Exercises References Further Reading Web Resources Case: Forondo Artist Management Excellence Inc. Chapter 8: Physical Database Design and Database Infrastructure Learning Objectives Introduction The Physical Database Design Process Who Is Responsible for Physical Database Design? Physical Database Design as a Basis for Regulatory Compliance SOX and Databases IT Change Management Logical Access to Data IT Operations Data Volume and Usage Analysis Designing Fields Choosing Data Types Coding Techniques Controlling Data Integrity Handling Missing Data Denormalizing and Partitioning Data Denormalization Opportunities for and Types of Denormalization Denormalize with Caution Partitioning Designing Physical Database Files File Organizations Heap File Organization Sequential File Organizations Indexed File Organizations Hashed File Organizations Clustering Files Designing Controls for Files Using and Selecting Indexes Creating a Unique Key Index Creating a Secondary (Nonunique) Key Index When to Use Indexes Designing a Database for Optimal Query Performance Parallel Query Processing Overriding Automatic Query Optimization Data Dictionaries and Repositories Data Dictionary Repositories Database Software Data Security Features Views Integrity Controls Authorization Rules User-Defined Procedures Encryption Authentication Schemes Passwords Strong Authentication Database Backup and Recovery Basic Recovery Facilities Backup Facilities Journalizing Facilities Checkpoint Facility Recovery Manager Recovery and Restart Procedures Disk Mirroring Restore/Rerun Backward Recovery Forward Recovery Types of Database Failure Aborted Transactions Incorrect Data System Failure Database Destruction Disaster Recovery Cloud-Based Database Infrastructure Cloud-Based Models for Providing Data Management Services 407 Benefits and Downsides of Using Cloud-Based Management Services 408 Summary Key Terms Review Questions Problems and Exercises Field Exercises References Further Reading Web Resources Case: Forondo Artist Management Excellence Inc. Part IV: Advanced Database Topics An Overview of Part IV Chapter 9: Data Warehousing and Data Integration Learning Objectives Introduction Basic Concepts of Data Warehousing A Brief History of Data Warehousing The Need for Data Warehousing Need for a Company-Wide View Need to Separate Operational and Informational Systems Data Warehouse Architectures Independent Data Mart Data Warehousing Environment Dependent Data Mart and Operational Data Store Architecture: A Three-Level Approach Logical Data Mart and Real-Time Data Warehouse Architecture Three-Layer Data Architecture Role of the Enterprise Data Model Role of Metadata Some Characteristics of Data Warehouse Data Status versus Event Data Transient versus Periodic Data An Example of Transient and Periodic Data Transient Data Periodic Data Other Data Warehouse Changes The Derived Data Layer Characteristics of Derived Data The Star Schema Fact Tables and Dimension Tables Example Star Schema Surrogate Key Grain of the Fact Table Duration of the Database Size of the Fact Table Modeling Date and Time Variations of the Star Schema Multiple Fact Tables Factless Fact Tables Normalizing Dimension Tables Multivalued Dimensions Hierarchies Slowly Changing Dimensions Determining Dimensions and Facts Data Integration: An Overview General Approaches to Data Integration Data Federation Data Propagation Data Integration for Data Warehousing: The Reconciled Data Layer Characteristics of Data after ETL The ETL Process Mapping and Metadata Management Extract Cleanse Load and Index Data Transformation Data Transformation Functions Record-Level Functions Field-Level Functions Data Warehouse Administration The Future of Data Warehousing: Integration with Other Forms of Data Management and Analytics Speed of Processing Moving the Data Warehouse into the Cloud Dealing with Unstructured Data Summary Key Terms Review Questions Problems and Exercises Field Exercises References Further Reading Web Resources Chapter 10: Big Data Technologies Learning Objectives Introduction Moving Beyond Transactional and Data Warehousing Databases Big Data NoSQL Classification of NoSQL DBMSs Key-Value Stores Document Stores Wide-Column Stores Graph-Oriented Databases NoSQL Examples Redis MongoDB Apache Cassandra Neo4j A NoSQL Example: MongoDB Documents Collections Relationships Querying MongoDB Impact of NoSQL on Database Professionals Hadoop Components of Hadoop The Hadoop Distributed File System (HDFS) MapReduce Pig Hive HBase A Practical Introduction to Pig Loading Data Transforming Data A Practical Introduction to Hive Creating a Table Loading Data into the Table Processing the Data Integrated Analytics and Data Science Platforms HP HAVEn Teradata Aster IBM Big Data Platform Putting It All Together: Integrated Data Architecture Summary Key Terms Review Questions Problems and Exercises References Further Reading Web Resources Chapter 11: Analytics and Its Implications Learning Objectives Introduction Analytics Types of Analytics Use of Descriptive Analytics SQL OLAP Querying OLAP Tools Data Visualization Business Performance Management and Dashboards Use of Predictive Analytics Data Mining Tools Examples of Predictive Analytics Use of Prescriptive Analytics Key User Tools for Analytics Analytical and OLAP Functions R 524 Python Apache Spark Data Management Infrastructure for Analytics Impact of Big Data and Analytics Applications of Big Data and Analytics Business E-Government and Politics Science and Technology Smart Health and Well-Being Security and Public Safety Implications of Big Data Analytics and Decision Making Personal Privacy versus Collective Benefits Ownership and Access Quality and Reuse of Data and Algorithms Transparency and Validation Changing Nature of Work Demands for Workforce Capabilities and Education Summary Key Terms Review Questions Problems and Exercises References Further Reading Chapter 12: Data and Database Administration with Focus on Data Quality Learning Objectives Introduction Overview of Data and Database Administration Data Administration Database Administration Traditional Database Administration Trends in Database Administration Evolving Data Administration Roles The Open Source Movement and Database Management Data Governance Managing Data Quality Characteristics of Quality Data External Data Sources Redundant Data Storage and Inconsistent Metadata Data Entry Problems Lack of Organizational Commitment Data Quality Improvement Get the Business Buy-In Conduct a Data Quality Audit Establish a Data Stewardship Program Improve Data Capture Processes Apply Modern Data Management Principles and Technology Apply TQM Principles and Practices Summary of Data Quality Data Availability Costs of Downtime Measures to Ensure Availability Hardware Failures Loss or Corruption of Data Human Error Maintenance Downtime Network-Related Problems Master Data Management Summary Key Terms Review Questions Problems and Exercises Field Exercises References Further Reading Web Resources Glossary of Acronyms Glossary of Terms Index