دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Steven M. Girvin, Kun Yang سری: ISBN (شابک) : 110713739X, 9781107137394 ناشر: Cambridge University Press سال نشر: 2019 تعداد صفحات: 716 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 41 مگابایت
در صورت تبدیل فایل کتاب Modern Condensed Matter Physics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فیزیک ماده متراکم مدرن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
فیزیک ماده متراکم مدرن مهمترین پیشرفت ها در زمینه دهه های اخیر را گرد هم می آورد. این کتاب آموزشی جامع و عمیقی را به مدرسان تدریس دروس ماده فشرده در سطح فارغ التحصیل ارائه می دهد که دانشجویان تحصیلات تکمیلی را برای تحقیق یا مطالعه بیشتر و همچنین خواندن کتاب های پیشرفته و تخصصی تر و ادبیات تحقیق در این زمینه آماده می کند. این کتاب درسی اصول جامدات کریستالی و همچنین شبکههای نوری مشابه و بلورهای فوتونی را پوشش میدهد، در حالی که موضوعات پیشرفتهای مانند سیستمهای بینظم، سیستمهای مزوسکوپی، سیستمهای چند بدنه، مغناطیس کوانتومی، میعانات بوز-اینشتین، درهمتنیدگی کوانتومی و ابررسانا را مورد بحث قرار میدهد. بیت های کوانتومی به دانش آموزان زمینه ریاضی مناسب برای درک مفاهیم توپولوژیکی که در میدان نفوذ کرده اند، همراه با مثال های فیزیکی متعددی از اثر هال کوانتومی کسری گرفته تا عایق های توپولوژیکی، کد توریک و فرمیون های ماورانا ارائه می شود. تمرینها، جعبههای تفسیر، و ضمیمهها راهنمایی و بازخورد را برای مبتدیان و متخصصان فراهم میکنند.
Modern Condensed Matter Physics brings together the most important advances in the field of recent decades. It provides instructors teaching graduate-level condensed matter courses with a comprehensive and in-depth textbook that will prepare graduate students for research or further study as well as reading more advanced and specialized books and research literature in the field. This textbook covers the basics of crystalline solids as well as analogous optical lattices and photonic crystals, while discussing cutting-edge topics such as disordered systems, mesoscopic systems, many-body systems, quantum magnetism, Bose–Einstein condensates, quantum entanglement, and superconducting quantum bits. Students are provided with the appropriate mathematical background to understand the topological concepts that have been permeating the field, together with numerous physical examples ranging from the fractional quantum Hall effect to topological insulators, the toric code, and majorana fermions. Exercises, commentary boxes, and appendices afford guidance and feedback for beginners and experts alike.
Contents Preface Acknowledgments 1 Overview of Condensed Matter Physics 1.1 Definition of Condensed Matter and Goals of Condensed Matter Physics 1.2 Classification (or Phases) of Condensed Matter Systems 1.2.1 Atomic Spatial Structures 1.2.2 Electronic Structures or Properties 1.2.3 Symmetries 1.2.4 Beyond Symmetries 1.3 Theoretical Descriptions of Condensed Matter Phases 1.4 Experimental Probes of Condensed Matter Systems 2 Spatial Structure 2.1 Probing the Structure 2.2 Semiclassical Theory of X-Ray Scattering 2.3 Quantum Theory of Electron–Photon Interaction and X-Ray Scattering 2.4 X-Ray Scattering from a Condensed Matter System 2.5 Relationship of S(q±) and Spatial Correlations 2.6 Liquid State versus Crystal State 3 Lattices and Symmetries 3.1 The Crystal as a Broken-Symmetry State 3.2 Bravais Lattices and Lattices with Bases 3.2.1 Bravais Lattices 3.2.2 Lattices with Bases 3.2.3 Lattice Symmetries in Addition to Translation 3.3 Reciprocal Lattices 3.4 X-Ray Scattering from Crystals 3.5 Effects of Lattice Fluctuations on X-Ray Scattering 3.6 Notes and Further Reading 4 Neutron Scattering 4.1 Introduction to Neutron Scattering 4.2 Inelastic Neutron Scattering 4.3 Dynamical Structure Factor and f -Sum Rule 4.3.1 Classical Harmonic Oscillator 4.3.2 Quantum Harmonic Oscillator 4.4 Single-Mode Approximation and Superfluid 4He 5 Dynamics of Lattice Vibrations 5.1 Elasticity and Sound Modes in Continuous Media 5.2 Adiabatic Approximation and Harmonic Expansion of Atomic Potential 5.3 Classical Dynamics of Lattice Vibrations 6 Quantum Theory of Harmonic Crystals 6.1 Heat Capacity 6.2 Canonical Quantization of Lattice Vibrations 6.3 Quantum Dynamical Structure Factor 6.4 Debye–Waller Factor and Stability of Crystalline Order 6.5 Mössbauer Effect 7 Electronic Structure of Crystals 7.1 Drude Theory of Electron Conduction in Metals 7.2 Independent Electron Model 7.3 Bloch’s Theorem 7.3.1 Band Gaps and Bragg Reflection 7.3.2 Van Hove Singularities 7.3.3 Velocity of Bloch Electrons 7.4 Tight-Binding Method 7.4.1 Bonds vs. Bands 7.4.2 Wannier Functions 7.4.3 Continuum Limit of Tight-Binding Hamiltonians 7.4.4 Limitations of the Tight-Binding Model 7.4.5 s–d Hybridization in Transition Metals 7.5 Graphene Band Structure 7.6 Polyacetylene and the Su–Schrieffer–Heeger Model 7.6.1 Dirac electrons in 1D and the Peierls instability 7.6.2 Ground-State Degeneracy and Solitons 7.6.3 Zero Modes Bound to Solitons 7.6.4 Quantum Numbers of Soliton States and Spin–Charge Separation 7.7 Thermodynamic Properties of Bloch Electrons 7.7.1 Specific Heat 7.7.2 Magnetic Susceptibility 7.8 Spin–Orbit Coupling and Band Structure 7.9 Photonic Crystals 7.10 Optical Lattices 7.10.1 Oscillator Model of Atomic Polarizability 7.10.2 Quantum Effects in Optical Lattices 8 Semiclassical Transport Theory 8.1 Review of Semiclassical Wave Packets 8.2 Semiclassical Wave-Packet Dynamics in Bloch Bands 8.2.1 Derivation of Bloch Electron Equations of Motion 8.2.2 Zener Tunneling (or Interband Transitions) 8.3 Holes 8.4 Uniform Magnetic Fields 8.5 Quantum Oscillations 8.6 Semiclassical E± × B± Drift 8.7 The Boltzmann Equation 8.8 Boltzmann Transport 8.8.1 Einstein Relation 8.9 Thermal Transport and Thermoelectric Effects 9 Semiconductors 9.1 Homogeneous Bulk Semiconductors 9.2 Impurity Levels 9.3 Optical Processes in Semiconductors 9.3.1 Angle-Resolved Photoemission Spectroscopy 9.4 The p–n Junction 9.4.1 Light-Emitting Diodes and Solar Cells 9.5 Other Devices 9.5.1 Metal–Oxide–Semiconductor Field-Effect Transistors (MOSFETs) 9.5.2 Heterostructures 9.5.3 Quantum Point Contact, Wire and Dot 9.6 Notes and Further Reading 10 Non-local Transport in Mesoscopic Systems 10.1 Introduction to Transport of Electron Waves 10.2 Landauer Formula and Conductance Quantization 10.3 Multi-terminal Devices 10.4 Universal Conductance Fluctuations 10.4.1 Transmission Eigenvalues 10.4.2 UCF Fingerprints 10.5 Noise in Mesoscopic Systems 10.5.1 Quantum Shot Noise 10.6 Dephasing 11 Anderson Localization 11.1 Absence of Diffusion in Certain Random Lattices 11.2 Classical Diffusion 11.3 Semiclassical Diffusion 11.3.1 Review of Scattering from a Single Impurity 11.3.2 Scattering from Many Impurities 11.3.3 Multiple Scattering and Classical Diffusion 11.4 Quantum Corrections to Diffusion 11.4.1 Real-Space Picture 11.4.2 Enhanced Backscattering 11.5 Weak Localization in 2D 11.5.1 Magnetic Fields and Spin–Orbit Coupling 11.6 Strong Localization in 1D 11.7 Localization and Metal–Insulator Transition in 3D 11.8 Scaling Theory of Localization and the Metal–Insulator Transition 11.8.1 Thouless Picture of Conductance 11.8.2 Persistent Currents in Disordered Mesoscopic Rings 11.8.3 Scaling Theory 11.8.4 Scaling Hypothesis and Universality 11.9 Scaling and Transport at Finite Temperature 11.9.1 Mobility Gap and Activated Transport 11.9.2 Variable-Range Hopping 11.10 Anderson Model 11.11 Many-Body Localization 12 Integer Quantum Hall Effect 12.1 Hall-Effect Transport in High Magnetic Fields 12.2 Why 2D Is Important 12.3 Why Disorder and Localization Are Important 12.4 Classical and Semiclassical Dynamics 12.4.1 Classical Dynamics 12.4.2 Semiclassical Approximation 12.5 Quantum Dynamics in Strong B Fields 12.6 IQHE Edge States 12.7 Semiclassical Percolation Picture of the IQHE 12.8 Anomalous Integer Quantum Hall Sequence in Graphene 12.9 Magnetic Translation Invariance and Magnetic Bloch Bands 12.9.1 Simple Landau Gauge Example 12.10 Quantization of the Hall Conductance in Magnetic Bloch Bands 13 Topology and Berry Phase 13.1 Adiabatic Evolution and the Geometry of Hilbert Space 13.2 Berry Phase and the Aharonov–Bohm Effect 13.3 Spin-1/2 Berry Phase 13.3.1 Spin–Orbit Coupling and Suppression of Weak Localization 13.4 Berry Curvature of Bloch Bands and Anomalous Velocity 13.4.1 Anomalous Velocity 13.5 Topological Quantization of Hall Conductance of Magnetic Bloch Bands 13.5.1 Wannier Functions of Topologically Non-trivial Bands 13.5.2 Band Crossing and Change of Band Topology 13.5.3 Relation Between the Chern Number and Chiral Edge States: Bulk–Edge Correspondence 13.6 An Example of Bands Carrying Non-zero Chern Numbers: Haldane Model 13.7 Thouless Charge Pump and Electric Polarization 13.7.1 Modern Theory of Electric Polarization 14 Topological Insulators and Semimetals 14.1 Kane–Mele Model 14.2 Z2 Characterization of Topological Insulators 14.3 Massless Dirac Surface/Interface States 14.4 Weyl Semimetals 14.4.1 Fermi Arcs on the Surface 14.4.2 Chiral Anomaly 14.5 Notes and Further Reading 15 Interacting Electrons 15.1 Hartree Approximation 15.2 Hartree–Fock Approximation 15.2.1 Koopmans’ Theorem 15.3 Hartree–Fock Approximation for the 3D Electron Gas 15.3.1 Total Exchange Energy of the 3DEG in the Hartree–Fock Approximation 15.4 Density Functional Theory 15.5 Kohn–Sham Single-Particle Equations 15.6 Local-Density Approximation 15.7 Density–Density Response Function and Static Screening 15.7.1 Thomas–Fermi Approximation 15.7.2 Lindhard Approximation 15.8 Dynamical Screening and Random-Phase Approximation 15.9 Plasma Oscillation and Plasmon Dispersion 15.9.1 Plasma Frequency and Plasmon Dispersion from the RPA 15.9.2 Plasma Frequency from Classical Dynamics 15.9.3 Plasma Frequency and Plasmon Dispersion from the Single-Mode Approximation 15.10 Dielectric Function and Optical Properties 15.10.1 Dielectric Function and AC Conductivity 15.10.2 Optical Measurements of Dielectric Function 15.11 Landau’s Fermi-Liquid Theory 15.11.1 Elementary Excitations of a Free Fermi Gas 15.11.2 Adiabaticity and Elementary Excitations of an Interacting Fermi Gas 15.11.3 Fermi-Liquid Parameters 15.12 Predictions of Fermi-Liquid Theory 15.12.1 Heat Capacity 15.12.2 Compressibility 15.12.3 Spin Susceptibility 15.12.4 Collective Modes, Dynamical and Transport Properties 15.13 Instabilities of Fermi Liquids 15.13.1 Ferromagnetic Instability 15.13.2 Pomeranchuk Instabilities 15.13.3 Pairing Instability 15.13.4 Charge and Spin Density-Wave Instabilities 15.13.5 One Dimension 15.13.6 Two-Dimensional Electron Gas at High Magnetic Field 15.14 Infrared Singularities in Fermi Liquids 15.14.1 Perfect Screening and the Friedel Sum Rule 15.14.2 Orthogonality Catastrophe 15.14.3 Magnetic Impurities in Metals: The Kondo Problem 15.15 Summary and Outlook 16 Fractional Quantum Hall Effect 16.1 Landau Levels Revisited 16.2 One-Body Basis States in Symmetric Gauge 16.3 Two-Body Problem and Haldane Pseudopotentials 16.4 The ν =1 Many-Body State and Plasma Analogy 16.4.1 Electron and Hole Excitations at ν =1 16.5 Laughlin’s Wave Function 16.6 Quasiparticle and Quasihole Excitations of Laughlin States 16.7 Fractional Statistics of Laughlin Quasiparticles 16.7.1 Possibility of Fractional Statistics in 2D 16.7.2 Physical Model of Anyons 16.7.3 Statistics Angle of Laughlin Quasiholes 16.8 Collective Excitations 16.9 Bosonization and Fractional Quantum Hall Edge States 16.9.1 Shot-Noise Measurement of Fractional Quasiparticle Charge 16.10 Composite Fermions and Hierarchy States 16.10.1 Another Take on Laughlin’s Wave Function 16.10.2 Jain Sequences 16.11 General Formalism of Electron Dynamics Confined to a Single Landau Level 16.11.1 Finite-Size Geometries 16.12 Relation between Fractional Statistics and Topological Degeneracy 16.13 Notes and Further Reading 17 Magnetism 17.1 Basics 17.2 Classical Theory of Magnetism 17.3 Quantum Theory of Magnetism of Individual Atoms 17.3.1 Quantum Diamagnetism 17.3.2 Quantum Paramagnetism 17.3.3 Quantum Spin 17.4 The Hubbard Model and Mott Insulators 17.5 Magnetically Ordered States and Spin-Wave Excitations 17.5.1 Ferromagnets 17.5.2 Antiferromagnets 17.6 One Dimension 17.6.1 Lieb–Schultz–Mattis Theorem 17.6.2 Spin-1/2 Chains 17.6.3 Spin-1 Chains, Haldane Gap, and String Order 17.6.4 Matrix Product and Tensor Network States 17.7 Valence-Bond-Solid and Spin-Liquid States in 2D and Higher Dimensions 17.7.1 Z2 Topological Order in Resonating Valence-Bond Spin Liquid 17.8 An Exactly Solvable Model of Z2 Spin Liquid: Kitaev’s Toric Code 17.8.1 Toric Code as Quantum Memory 17.9 Landau Diamagnetism 18 Bose–Einstein Condensation and Superfluidity 18.1 Non-interacting Bosons and Bose–Einstein Condensation 18.1.1 Off-Diagonal Long-Range Order 18.1.2 Finite Temperature and Effects of Trapping Potential 18.1.3 Experimental Observation of Bose–Einstein Condensation 18.2 Weakly Interacting Bosons and Bogoliubov Theory 18.3 Stability of Condensate and Superfluidity 18.4 Bose–Einstein Condensation of Exciton-Polaritons: Quantum Fluids of Light 19 Superconductivity: Basic Phenomena and Phenomenological Theories 19.1 Thermodynamics 19.1.1 Type-I Superconductors 19.1.2 Type-II Superconductors 19.2 Electrodynamics 19.3 Meissner Kernel 19.4 The Free-Energy Functional 19.5 Ginzburg–Landau Theory 19.6 Type-II Superconductors 19.6.1 Abrikosov Vortex Lattice 19.6.2 Isolated Vortices 19.7 Why Do Superconductors Superconduct? 19.8 Comparison between Superconductivity and Superfluidity 19.9 Josephson Effect 19.9.1 Superconducting Quantum Interference Devices (SQUIDS) 19.10 Flux-Flow Resistance in Superconductors 19.11 Superconducting Quantum Bits 20 Microscopic Theory of Superconductivity 20.1 Origin of Attractive Interaction 20.2 BCS Reduced Hamiltonian and Mean-Field Solution 20.2.1 Condensation Energy 20.2.2 Elementary Excitations 20.2.3 Finite-Temperature Properties 20.3 Microscopic Derivation of Josephson Coupling 20.4 Electromagnetic Response of Superconductors 20.5 BCS–BEC Crossover 20.6 Real-Space Formulation and the Bogoliubov–de Gennes Equation 20.7 Kitaev’s p-Wave Superconducting Chain and Topological Superconductors 20.8 Unconventional Superconductors 20.8.1 General Solution of Cooper Problem 20.8.2 General Structure of Pairing Order Parameter 20.8.3 Fulde–Ferrell–Larkin–Ovchinnikov States 20.9 High-Temperature Cuprate Superconductors 20.9.1 Antiferromagnetism in the Parent Compound 20.9.2 Effects of Doping 20.9.3 Nature of the Superconducting State 20.9.4 Why d-Wave? Appendix A. Linear-Response Theory A.1 Static Response A.2 Dynamical Response A.3 Causality, Spectral Densities, and Kramers–Kronig Relations Appendix B. The Poisson Summation Formula Appendix C. Tunneling and Scanning Tunneling Microscopy C.1 A Simple Example C.2 Tunnel Junction C.3 Scanning Tunneling Microscopy Appendix D. Brief Primer on Topology D.1 Introduction D.2 Homeomorphism D.3 Homotopy D.4 Fundamental Group D.5 Gauss–Bonnet Theorem D.6 Topological Defects Appendix E. Scattering Matrices, Unitarity, and Reciprocity Appendix F. Quantum Entanglement in Condensed Matter Physics F.1 Reduced Density Matrix F.2 Schmidt and Singular-Value Decompositions F.3 Entanglement Entropy Scaling Laws F.4 Other Measures of Entanglement F.5 Closing Remarks Appendix G. Linear Response and Noise in Electrical Circuits G.1 Classical Thermal Noise in a Resistor G.2 Linear Response of Electrical Circuits G.3 Hamiltonian Description of Electrical Circuits G.3.1 Hamiltonian for Josephson Junction Circuits Appendix H. Functional Differentiation Appendix I. Low-Energy Effective Hamiltonians I.1 Effective Tunneling Hamiltonian I.2 Antiferromagnetism in the Hubbard Model I.3 Summary Appendix J. Introduction to Second Quantization J.1 Second Quantization J.2 Majorana Representation of Fermion Operators References Index