ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Modern Computer Vision with Pytorch

دانلود کتاب چشم انداز مدرن کامپیوتر با Pytorch

Modern Computer Vision with Pytorch

مشخصات کتاب

Modern Computer Vision with Pytorch

ویرایش: 1 
نویسندگان:   
سری:  
ISBN (شابک) : 9781839213472 
ناشر: Packt 
سال نشر: 2020 
تعداد صفحات: 805 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 79 مگابایت 

قیمت کتاب (تومان) : 50,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 14


در صورت تبدیل فایل کتاب Modern Computer Vision with Pytorch به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب چشم انداز مدرن کامپیوتر با Pytorch نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Title Page
Copyright and Credits
Dedication
About Packt
Contributors
Table of Contents
Preface
Section 1 - Fundamentals of Deep Learning for Computer Vision
Chapter 1: Artificial Neural Network Fundamentals
	Comparing AI and traditional machine learning
	Learning about the artificial neural network building blocks
	Implementing feedforward propagation
		Calculating the hidden layer unit values
		Applying the activation function
		Calculating the output layer values
		Calculating loss values
			Calculating loss during continuous variable prediction
			Calculating loss during categorical variable prediction
		Feedforward propagation in code
			Activation functions in code
			Loss functions in code
	Implementing backpropagation
		Gradient descent in code
		Implementing backpropagation using the chain rule
	Putting feedforward propagation and backpropagation together
	Understanding the impact of the learning rate 
	Summarizing the training process of a neural network
	Summary
	Questions
Chapter 2: PyTorch Fundamentals
	Installing PyTorch
	PyTorch tensors
		Initializing a tensor
		Operations on tensors
		Auto gradients of tensor objects
		Advantages of PyTorch's tensors over NumPy's ndarrays
	Building a neural network using PyTorch
		Dataset, DataLoader, and batch size
		Predicting on new data points
		Implementing a custom loss function
		Fetching the values of intermediate layers
	Using a sequential method to build a neural network
	Saving and loading a PyTorch model
		state dict
		Saving
		Loading
	Summary
	Questions
Chapter 3: Building a Deep Neural Network with PyTorch
	Representing an image
		Converting images into structured arrays and scalars
	Why leverage neural networks for image analysis?
	Preparing our data for image classification
	Training a neural network
	Scaling a dataset to improve model accuracy
	Understanding the impact of varying the batch size
		Batch size of 32
		Batch size of 10,000
	Understanding the impact of varying the loss optimizer
	Understanding the impact of varying the learning rate
		Impact of the learning rate on a scaled dataset
			High learning rate
			Medium learning rate
			Low learning rate
			Parameter distribution across layers for different learning rates
		Impact of varying the learning rate on a non-scaled dataset
	Understanding the impact of learning rate annealing
	Building a deeper neural network
	Understanding the impact of batch normalization
		Very small input values without batch normalization
		Very small input values with batch normalization
	The concept of overfitting
		Impact of adding dropout
		Impact of regularization
			L1 regularization
			L2 regularization
	Summary
	Questions
Section 2 - Object Classification and Detection
Chapter 4: Introducing Convolutional Neural Networks
	The problem with traditional deep neural networks
	Building blocks of a CNN
		Convolution
		Filter
		Strides and padding 
			Strides
			Padding
		Pooling
		Putting them all together
		How convolution and pooling help in image translation
	Implementing a CNN 
		Building a CNN-based architecture using PyTorch
		Forward propagating the output in Python
	Classifying images using deep CNNs
	Implementing data augmentation
		Image augmentations
			Affine transformations
			Changing the brightness
			Adding noise
			Performing a sequence of augmentations
		Performing data augmentation on a batch of images and the need for collate_fn
		Data augmentation for image translation
	Visualizing the outcome of feature learning
	Building a CNN for classifying real-world images
		Impact on the number of images used for training
	Summary
	Questions
Chapter 5: Transfer Learning for Image Classification
	Introducing transfer learning
	Understanding VGG16 architecture
	Understanding ResNet architecture
	Implementing facial key point detection
		2D and 3D facial key point detection
	Multi-task learning – Implementing age estimation and gender classification
	Introducing the torch_snippets library
	Summary
	Questions
Chapter 6: Practical Aspects of Image Classification
	Generating CAMs
	Understanding the impact of data augmentation and batch normalization
		Coding up road sign detection
	Practical aspects to take care of during model implementation
		Dealing with imbalanced data
		The size of the object within an image
		Dealing with the difference between training and validation data
		The number of nodes in the flatten layer
		Image size
		Leveraging OpenCV utilities
	Summary
	Questions
Chapter 7: Basics of Object Detection
	Introducing object detection
	Creating a bounding box ground truth for training
		Installing the image annotation tool
	Understanding region proposals
		Leveraging SelectiveSearch to generate region proposals
		Implementing SelectiveSearch to generate region proposals
	Understanding IoU
	Non-max suppression
	Mean average precision
	Training R-CNN-based custom object detectors
		Working details of R-CNN
		Implementing R-CNN for object detection on a custom dataset
			Downloading the dataset
			Preparing the dataset
			Fetching region proposals and the ground truth of offset
			Creating the training data
			R-CNN network architecture
			Predict on a new image
	Training Fast R-CNN-based custom object detectors
		Working details of Fast R-CNN
		Implementing Fast R-CNN for object detection on a custom dataset
	Summary
	Questions
Chapter 8: Advanced Object Detection
	Components of modern object detection algorithms
		Anchor boxes
		Region Proposal Network
			Classification and regression
	Training Faster R-CNN on a custom dataset
	Working details of YOLO
	Training YOLO on a custom dataset
		Installing Darknet
		Setting up the dataset format
		Configuring the architecture
		Training and testing the model
	Working details of SSD
		Components in SSD code
			SSD300
			MultiBoxLoss
	Training SSD on a custom dataset
	Summary
	Test your understanding
Chapter 9: Image Segmentation
	Exploring the U-Net architecture
		Performing upscaling
	Implementing semantic segmentation using U-Net
	Exploring the Mask R-CNN architecture
		RoI Align
		Mask head
	Implementing instance segmentation using Mask R-CNN
		Predicting multiple instances of multiple classes
	Summary
	Questions
Chapter 10: Applications of Object Detection and Segmentation
	Multi-object instance segmentation
		Fetching and preparing data
		Training the model for instance segmentation
		Making inferences on a new image
	Human pose detection
	Crowd counting
		Coding up crowd counting
	Image colorization
	3D object detection with point clouds
		Theory
			Input encoding
			Output encoding
		Training the YOLO model for 3D object detection
			Data format
			Data inspection
			Training
			Testing
	Summary
Section 3 - Image Manipulation
Chapter 11: Autoencoders and Image Manipulation
	Understanding autoencoders
		Implementing vanilla autoencoders
	Understanding convolutional autoencoders
		Grouping similar images using t-SNE
	Understanding variational autoencoders
		Working of VAE
		KL divergence
		Building a VAE
	Performing an adversarial attack on images
	Performing neural style transfer
	Generating deep fakes
	Summary
	Questions
Chapter 12: Image Generation Using GANs
	Introducing GANs
	Using GANs to generate handwritten digits
	Using DCGANs to generate face images
	Implementing conditional GANs
	Summary
	Questions
Chapter 13: Advanced GANs to Manipulate Images
	Leveraging the Pix2Pix GAN
	Leveraging CycleGAN
	Leveraging StyleGAN on custom images
	Super-resolution GAN
		Architecture
		Coding SRGAN
	Summary
	Questions
Section 4 - Combining Computer Vision with Other Techniques
Chapter 14: Training with Minimal Data Points
	Implementing zero-shot learning
		Coding zero-shot learning
	Implementing few-shot learning
		Building a Siamese network
			Coding Siamese networks
		Working details of prototypical networks
		Working details of relation networks
	Summary
	Questions
Chapter 15: Combining Computer Vision and NLP Techniques
	Introducing RNNs
		The idea behind the need for RNN architecture
		Exploring the structure of an RNN
		Why store memory?
	Introducing LSTM architecture
		The working details of LSTM
		Implementing LSTM in PyTorch
	Implementing image captioning
		Image captioning in code
	Transcribing handwritten images
		The working details of CTC loss
		Calculating the CTC loss value
		Handwriting transcription in code
	Object detection using DETR
		The working details of transformers
			Basics of transformers
		The working details of DETR
		Detection with transformers in code
	Summary
	Questions
Chapter 16: Combining Computer Vision and Reinforcement Learning
	Learning the basics of reinforcement learning
		Calculating the state value
		Calculating the state-action value
	Implementing Q-learning
		Q-value
		Understanding the Gym environment
		Building a Q-table
		Leveraging exploration-exploitation
	Implementing deep Q-learning
	Implementing deep Q-learning with the fixed targets model
		Coding up an agent to play Pong
	Implementing an agent to perform autonomous driving
		Installing the CARLA environment
			Install the CARLA binaries
			Installing the CARLA Gym environment
		Training a self-driving agent
			model.py
			actor.py
			Training DQN with fixed targets
	Summary
	Questions
Chapter 17: Moving a Model to Production
	Understanding the basics of an API
	Creating an API and making predictions on a local server
		Installing the API module and dependencies
		Serving an image classifier
			fmnist.py
			server.py
			Running the server
	Moving the API to the cloud
		Comparing Docker containers and Docker images
		Creating a Docker container
			Creating the requirements.txt file
			Creating a Dockerfile
			Building a Docker image and creating a Docker container
		Shipping and running the Docker container in the cloud
			Configuring AWS
			Creating a Docker repository on AWS ECR and pushing the image
			Creating an EC2 instance
			Pulling the image and building the Docker container
	Summary
Chapter 18: Using OpenCV Utilities for Image Analysis
	Drawing bounding boxes around words in an image
	Detecting lanes in an image of a road
	Detecting objects based on color
	Building a panoramic view of images
	Detecting the number plate of a car
	Summary
Appendix
	Chapter 1 - Artificial Neural Network Fundamentals
	Chapter 2 - PyTorch Fundamentals
	Chapter 3 - Building a Deep Neural Network with PyTorch
	Chapter 4 - Introducing Convolutional Neural Networks
	Chapter 5 - Transfer Learning for Image Classification
	Chapter 6 - Practical Aspects of Image Classification
	Chapter 7 - Basics of Object Detection
	Chapter 8 - Advanced Object Detection
	Chapter 9 - Image Segmentation
	Chapter 11 - Autoencoders and Image Manipulation
	Chapter 12 - Image Generation Using GANs
	Chapter 13 - Advanced GANs to Manipulate Images
	Chapter 14 - Training with Minimal Data Points
	Chapter 15 - Combining Computer Vision and NLP Techniques
	Chapter 16 - Combining Computer Vision and Reinforcement Learning
Other Books You May Enjoy
Index




نظرات کاربران