دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: V Kishore Ayyadevara. Yeshwanth Reddy
سری:
ISBN (شابک) : 9781839213472
ناشر: Packt
سال نشر: 2020
تعداد صفحات: 805
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 79 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Modern Computer Vision with Pytorch به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب چشم انداز مدرن کامپیوتر با Pytorch نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Title Page Copyright and Credits Dedication About Packt Contributors Table of Contents Preface Section 1 - Fundamentals of Deep Learning for Computer Vision Chapter 1: Artificial Neural Network Fundamentals Comparing AI and traditional machine learning Learning about the artificial neural network building blocks Implementing feedforward propagation Calculating the hidden layer unit values Applying the activation function Calculating the output layer values Calculating loss values Calculating loss during continuous variable prediction Calculating loss during categorical variable prediction Feedforward propagation in code Activation functions in code Loss functions in code Implementing backpropagation Gradient descent in code Implementing backpropagation using the chain rule Putting feedforward propagation and backpropagation together Understanding the impact of the learning rate Summarizing the training process of a neural network Summary Questions Chapter 2: PyTorch Fundamentals Installing PyTorch PyTorch tensors Initializing a tensor Operations on tensors Auto gradients of tensor objects Advantages of PyTorch's tensors over NumPy's ndarrays Building a neural network using PyTorch Dataset, DataLoader, and batch size Predicting on new data points Implementing a custom loss function Fetching the values of intermediate layers Using a sequential method to build a neural network Saving and loading a PyTorch model state dict Saving Loading Summary Questions Chapter 3: Building a Deep Neural Network with PyTorch Representing an image Converting images into structured arrays and scalars Why leverage neural networks for image analysis? Preparing our data for image classification Training a neural network Scaling a dataset to improve model accuracy Understanding the impact of varying the batch size Batch size of 32 Batch size of 10,000 Understanding the impact of varying the loss optimizer Understanding the impact of varying the learning rate Impact of the learning rate on a scaled dataset High learning rate Medium learning rate Low learning rate Parameter distribution across layers for different learning rates Impact of varying the learning rate on a non-scaled dataset Understanding the impact of learning rate annealing Building a deeper neural network Understanding the impact of batch normalization Very small input values without batch normalization Very small input values with batch normalization The concept of overfitting Impact of adding dropout Impact of regularization L1 regularization L2 regularization Summary Questions Section 2 - Object Classification and Detection Chapter 4: Introducing Convolutional Neural Networks The problem with traditional deep neural networks Building blocks of a CNN Convolution Filter Strides and padding Strides Padding Pooling Putting them all together How convolution and pooling help in image translation Implementing a CNN Building a CNN-based architecture using PyTorch Forward propagating the output in Python Classifying images using deep CNNs Implementing data augmentation Image augmentations Affine transformations Changing the brightness Adding noise Performing a sequence of augmentations Performing data augmentation on a batch of images and the need for collate_fn Data augmentation for image translation Visualizing the outcome of feature learning Building a CNN for classifying real-world images Impact on the number of images used for training Summary Questions Chapter 5: Transfer Learning for Image Classification Introducing transfer learning Understanding VGG16 architecture Understanding ResNet architecture Implementing facial key point detection 2D and 3D facial key point detection Multi-task learning – Implementing age estimation and gender classification Introducing the torch_snippets library Summary Questions Chapter 6: Practical Aspects of Image Classification Generating CAMs Understanding the impact of data augmentation and batch normalization Coding up road sign detection Practical aspects to take care of during model implementation Dealing with imbalanced data The size of the object within an image Dealing with the difference between training and validation data The number of nodes in the flatten layer Image size Leveraging OpenCV utilities Summary Questions Chapter 7: Basics of Object Detection Introducing object detection Creating a bounding box ground truth for training Installing the image annotation tool Understanding region proposals Leveraging SelectiveSearch to generate region proposals Implementing SelectiveSearch to generate region proposals Understanding IoU Non-max suppression Mean average precision Training R-CNN-based custom object detectors Working details of R-CNN Implementing R-CNN for object detection on a custom dataset Downloading the dataset Preparing the dataset Fetching region proposals and the ground truth of offset Creating the training data R-CNN network architecture Predict on a new image Training Fast R-CNN-based custom object detectors Working details of Fast R-CNN Implementing Fast R-CNN for object detection on a custom dataset Summary Questions Chapter 8: Advanced Object Detection Components of modern object detection algorithms Anchor boxes Region Proposal Network Classification and regression Training Faster R-CNN on a custom dataset Working details of YOLO Training YOLO on a custom dataset Installing Darknet Setting up the dataset format Configuring the architecture Training and testing the model Working details of SSD Components in SSD code SSD300 MultiBoxLoss Training SSD on a custom dataset Summary Test your understanding Chapter 9: Image Segmentation Exploring the U-Net architecture Performing upscaling Implementing semantic segmentation using U-Net Exploring the Mask R-CNN architecture RoI Align Mask head Implementing instance segmentation using Mask R-CNN Predicting multiple instances of multiple classes Summary Questions Chapter 10: Applications of Object Detection and Segmentation Multi-object instance segmentation Fetching and preparing data Training the model for instance segmentation Making inferences on a new image Human pose detection Crowd counting Coding up crowd counting Image colorization 3D object detection with point clouds Theory Input encoding Output encoding Training the YOLO model for 3D object detection Data format Data inspection Training Testing Summary Section 3 - Image Manipulation Chapter 11: Autoencoders and Image Manipulation Understanding autoencoders Implementing vanilla autoencoders Understanding convolutional autoencoders Grouping similar images using t-SNE Understanding variational autoencoders Working of VAE KL divergence Building a VAE Performing an adversarial attack on images Performing neural style transfer Generating deep fakes Summary Questions Chapter 12: Image Generation Using GANs Introducing GANs Using GANs to generate handwritten digits Using DCGANs to generate face images Implementing conditional GANs Summary Questions Chapter 13: Advanced GANs to Manipulate Images Leveraging the Pix2Pix GAN Leveraging CycleGAN Leveraging StyleGAN on custom images Super-resolution GAN Architecture Coding SRGAN Summary Questions Section 4 - Combining Computer Vision with Other Techniques Chapter 14: Training with Minimal Data Points Implementing zero-shot learning Coding zero-shot learning Implementing few-shot learning Building a Siamese network Coding Siamese networks Working details of prototypical networks Working details of relation networks Summary Questions Chapter 15: Combining Computer Vision and NLP Techniques Introducing RNNs The idea behind the need for RNN architecture Exploring the structure of an RNN Why store memory? Introducing LSTM architecture The working details of LSTM Implementing LSTM in PyTorch Implementing image captioning Image captioning in code Transcribing handwritten images The working details of CTC loss Calculating the CTC loss value Handwriting transcription in code Object detection using DETR The working details of transformers Basics of transformers The working details of DETR Detection with transformers in code Summary Questions Chapter 16: Combining Computer Vision and Reinforcement Learning Learning the basics of reinforcement learning Calculating the state value Calculating the state-action value Implementing Q-learning Q-value Understanding the Gym environment Building a Q-table Leveraging exploration-exploitation Implementing deep Q-learning Implementing deep Q-learning with the fixed targets model Coding up an agent to play Pong Implementing an agent to perform autonomous driving Installing the CARLA environment Install the CARLA binaries Installing the CARLA Gym environment Training a self-driving agent model.py actor.py Training DQN with fixed targets Summary Questions Chapter 17: Moving a Model to Production Understanding the basics of an API Creating an API and making predictions on a local server Installing the API module and dependencies Serving an image classifier fmnist.py server.py Running the server Moving the API to the cloud Comparing Docker containers and Docker images Creating a Docker container Creating the requirements.txt file Creating a Dockerfile Building a Docker image and creating a Docker container Shipping and running the Docker container in the cloud Configuring AWS Creating a Docker repository on AWS ECR and pushing the image Creating an EC2 instance Pulling the image and building the Docker container Summary Chapter 18: Using OpenCV Utilities for Image Analysis Drawing bounding boxes around words in an image Detecting lanes in an image of a road Detecting objects based on color Building a panoramic view of images Detecting the number plate of a car Summary Appendix Chapter 1 - Artificial Neural Network Fundamentals Chapter 2 - PyTorch Fundamentals Chapter 3 - Building a Deep Neural Network with PyTorch Chapter 4 - Introducing Convolutional Neural Networks Chapter 5 - Transfer Learning for Image Classification Chapter 6 - Practical Aspects of Image Classification Chapter 7 - Basics of Object Detection Chapter 8 - Advanced Object Detection Chapter 9 - Image Segmentation Chapter 11 - Autoencoders and Image Manipulation Chapter 12 - Image Generation Using GANs Chapter 13 - Advanced GANs to Manipulate Images Chapter 14 - Training with Minimal Data Points Chapter 15 - Combining Computer Vision and NLP Techniques Chapter 16 - Combining Computer Vision and Reinforcement Learning Other Books You May Enjoy Index