دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Jeffrey Strom
سری: Graduate Studies in Mathematics 127
ISBN (شابک) : 0821852868, 9780821852866
ناشر: American Mathematical Society
سال نشر: 2011
تعداد صفحات: 862
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 5 مگابایت
در صورت تبدیل فایل کتاب Modern classical homotopy theory به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نظریه هموتوپی کلاسیک مدرن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
هسته نظریه هموتوپی کلاسیک مجموعه ای از ایده ها و قضایا است که در دهه 1950 پدیدار شد و بعدها تا حد زیادی در مفهوم مقوله مدل مدون شد. این هسته شامل مفاهیم فیبراسیون و کوفیبراسیون است. مجتمع های CW; توالی فیبر و کوفایبر بلند؛ فضاهای حلقه و تعلیق؛ و غیره قضایای بازنمایی پذیری براون نشان می دهد که همسانی و همومولوژی نیز در نظریه هموتوپی کلاسیک موجود است. این متن نظریه هموتوپی کلاسیک را از دیدگاه مدرن توسعه میدهد، به این معنی که شرح از نظریه مقولههای مدل مطلع میشود و محدودیتها و مجموع هموتوپی نقش اصلی را ایفا میکنند. این توضیح با این اصل هدایت می شود که به طور کلی ترجیح داده می شود که نتایج توپولوژیکی را با استفاده از توپولوژی (به جای جبر) اثبات کند. زبان و نظریه اولیه حدود و حدود هموتوپی این امکان را فراهم می کند که فقط با مبانی جبر به عمق موضوع نفوذ کرد. متن به قلمرو پیشرفتهای میرسد، از جمله جبر استینرود، تناوب بات، محلیسازی، قضیه توان کوهن، مور، و نایزندوفر، و قضیه میلر در مورد حدس سالیوان. بنابراین به خواننده ابزارهای لازم برای درک و مشارکت در تحقیق در (بخشی از) مرز فعلی نظریه هموتوپی داده می شود. مدارک به طور کامل ارائه نمی شود. بلکه در قالب مجموعه مسائل جهت دار ارائه می شوند. از نظر کارشناس، اینها به عنوان شواهدی کوتاه خوانده می شود. برای تازه کارها چالش هایی هستند که آنها را به خود جذب می کند و به آنها کمک می کند تا استدلال ها را به طور کامل درک کنند
The core of classical homotopy theory is a body of ideas and theorems that emerged in the 1950s and was later largely codified in the notion of a model category. This core includes the notions of fibration and cofibration; CW complexes; long fiber and cofiber sequences; loop spaces and suspensions; and so on. Brown's representability theorems show that homology and cohomology are also contained in classical homotopy theory. This text develops classical homotopy theory from a modern point of view, meaning that the exposition is informed by the theory of model categories and that homotopy limits and colimits play central roles. The exposition is guided by the principle that it is generally preferable to prove topological results using topology (rather than algebra). The language and basic theory of homotopy limits and colimits make it possible to penetrate deep into the subject with just the rudiments of algebra. The text does reach advanced territory, including the Steenrod algebra, Bott periodicity, localization, the Exponent Theorem of Cohen, Moore, and Neisendorfer, and Miller's Theorem on the Sullivan Conjecture. Thus the reader is given the tools needed to understand and participate in research at (part of) the current frontier of homotopy theory. Proofs are not provided outright. Rather, they are presented in the form of directed problem sets. To the expert, these read as terse proofs; to novices they are challenges that draw them in and help them to thoroughly understand the arguments
Preface History The Aim of This Book. Omissions Problems and Exercises Audience Teaching from This Book Acknowledgements. Part 1 The Language of Categories Chapter 1 Categories and Functors 1.1. Diagrams 1.2. Categories 1.3. Functors 1.4. Natural Transformations 1.5. Duality 1.6. Products and Sums 1.7. Initial and Terminal Objects 1.8. Group and Cogroup Objects 1.9. Homomorphisms 1.10. Abelian Groups and Cogroups 1.11. Adjoint Functors Chapter 2 Limits and Colimits 2.1. Diagrams and Their Shapes 2.2. Limits and Colimits 2.3. Naturality of Limits and Colimits 2.4. Special Kinds of Limits and Colimits 2.4.1. Pullback 2.4.2. Pushout. 2.4.3. Telescopes and Towers. 2.5. Formal Properties of Pushout and Pullback Squares Part 2 Semi-Formal Homotopy Theory Chapter 3 Categories of Spaces 3.1. Spheres and Disks 3.2. CW Complexes 3.2.1. CW Complexes and Cellular Maps 3.2.2. Some Topology of CW Complexes. 3.2.3. Products of CW Complexes 3.3. Example: Projective Spaces 3.3.1. Projective Spaces. 3.3.2. Cellular Decomposition of FP^n. 3.4. Topological Spaces 3.4.1. Mapping Spaces. 3.4.2. The Category of Unpointed Spaces 3.5. The Category of Pairs 3.6. Pointed Spaces 3.6.1. Pointed Mapping Spaces. 3.6.2. Products of Pointed Spaces 3.6.3. The Category of Pointed Spaces 3.7. Relating the Categories of Pointed and Unpointed Spaces 3.7.1. Various Pointed and Unpointed Products. 3.7.2. Some Mixed Adjunctions 3.8. Suspension and Loop 3.8.1. Suspension 3.8.2. Loop Spaces 3.9. Additional Problems and Projects Chapter 4 Homotopy 4.1. Homotopy of Maps 4.1.1. The Deformation Approach. 4.1.2. Adjoint Definition of Homotopy 4.1.3. Homotopies of Paths. 4.1.4. Composing and Inverting Homotopies 4.2. Constructing Homotopies 4.2.1. Straight-Line Homotopy 4.2.2. Pushing a Map off of a Cell. 4.2.3. Pushing a Path off the Disk. 4.2.4. Cellular Approximation for 1-Dimensional Domains 4.2.5. Maps of Products. 4.3. Homotopy Theory 4.3.1. The Homotopy Category 4.3.2. Contractible Spaces and Nullhomotopic Maps 4.4. Groups and Cogroups in the Homotopy Category 4.5. Homotopy Groups 4.6. Homotopy and Duality 4.7. Homotopy in Mapping Categories 4.7.1. The Category of Maps 4.7.2. Weaker Notions of Homotopy Equivalence for Maps 4.7.3. Spaces under A or over B. 4.7.4. Pushouts and Pullbacks as Functors. 4.7.5. Maps into CW Pairs, Triples, etc. 4.8. Additional Problems Chapter 5 Cofibrations and Fibrations 5.1. Cofibrations 5.1.1. The Homotopy Extension Property. 5.1.2. Point-Set Topology of Cofibrations 5.1.3. Two Reformulations. 5.1.4. Cofibrations and Pushouts. 5.2. Special Properties of Cofibrations of Spaces 5.2.1. The Power of a Parametrized Cylinder 5.2.2. Mapping Spaces into Cofibrations 5.2.3. Products and Cofibrations 5.3. Fibrations 5.3.1. Dualizing Cofibrations 5.3.2. Some Examples 5.3.3. Pullbacks of Fibrations 5.4. Factoring through Cofibrations and Fibrations 5.4.1. Mapping Cylinders. 5.4.2. Converting a Map to a Fibration. 5.5. More Homotopy Theory in Categories of Maps 5.5.1. Mapping Cylinders in Mapping Categories. 5.5.2. Homotopy Inverses for Pointwise Equivalences 5.6. The Fundamental Lifting Property 5.6.1. The Case i is a Homotopy Equivalence. 5.6.2. Relative Homotopy Lifting 5.6.3. The Case p is a Homotopy Equivalence 5.6.4. Mutual Characterization of Fibrations and Cofibrations 5.6.5. Some Consequences of the Mutual Characterization 5.7. Pointed Cofibrations and Fibrations 5.8. Well-Pointed Spaces 5.8.1. Well-Pointed Spaces 5.8.2. Cofibrations and Fibrations of Well-Pointed Spaces 5.8.3. Double Factorizations. 5.8.4. The Fundamental Lifting Property 5.9. Exact Sequences, Cofibers and Fibers 5.9.1. Exact Sequences in Homotopy Theory. 5.9.2. The Cofiber of a Map. 5.9.3. The Fiber of a Map 5.9.4. Cofibers of Maps out of Contractible Spaces 5.10. Mapping Spaces 5.10.1. Unpointed Mapping Spaces 5.10.2. Pointed Maps into Pointed Fibrations. 5.10.3. Applications 5.11. Additional Topics, Problems and Projects 5.11.1. Homotopy Equivalences in A | T | B 5.11.2. Comparing Pointed and Unpointed Homotopy Classes 5.11.3. Problems Chapter 6 Homotopy Limits and Colimits 6.1. Homotopy Equivalence in Diagram Categories 6.2. Cofibrant Diagrams 6.2.1. Cofibrant Diagrams 6.2.2. An Instructive and Important Example 6.2.3. Cofibrant Replacements of Diagrams 6.3. Homotopy Colimits of Diagrams 6.3.1. The Homotopy Colimit of a Diagram. 6.3.2. Induced Maps of Homotopy Colimits 6.3.3. Example: Induced\' Maps Between Suspensions 6.3.4. The Functorial Approach to Homotopy Colimits. 6.4. Constructing Cofibrant Replacements 6.4.1. Simple Categories 6.4.2. Recognizing Cofibrant Diagrams. 6.4.3. Colimits of Well-Pointed Spaces 6.4.4. Existence of Cofibrant Replacements 6.5. Examples: Pushouts, 3 x 3s and Telescopes 6.5.1. Homotopy Pushouts 6.5.2. Telescopes 6.5.3. 3 x 3 Diagrams 6.6. Homotopy Limits 6.6.1. Fibrant Diagrams of Unpointed Spaces 6.6.2. Homotopy Limits. 6.6.3. Existence of Fibrant Replacements 6.6.4. Homotopy Limits of Pointed Spaces. 6.6.5. Special Cases: Maps, Pullbacks, 3 x 3s and Towers 6.7. Functors Applied to Homotopy Limits and Colimits 6.7.1. The Unpointed Case. 6.7.2. The Pointed Case. 6.7.3. Contravariant Functors 6.8. Homotopy Colimits of More General Diagrams 6.9. Additional Topics, Problems and Projects 6.9.1. Rigidifying Homotopy Morphisms of Diagrams 6.9.2. Homotopy Colimits versus Categorical Colimits 6.9.3. Homotopy Equivalence in Mapping Categories 6.9.4. Problems and Projects Chapter 7 Homotopy Pushout and Pullback Squares 7.1. Homotopy Pushout Squares 7.2. Recognition and Completion 7.2.1. Recognition. 7.2.2. Completion 7.3. Homotopy Pullback Squares 7.4. Manipulating Squares 7.4.1. Composition of Squares. 7.4.2. 3 x 3 Diagrams. 7.4.3. Application of Functors 7.5. Characterizing Homotopy Pushout and Pullback Squares 7.6. Additional Topics, Problems and Projects 7.6.1. Cartesian and Cocartesian Cubes. 7.6.2. Problems. Chapter 8 Tools and Techniques 8.1. Long Cofiber and Fiber Sequences 8.1.1. The Long Cofiber Sequence of a Map. 8.1.2. The Long Fiber Sequence of a Map 8.2. The Action of Paths in Fibrations 8.2.1. Admissible Maps 8.3. Every Action Has an Equal and Opposite Coaction 8.3.1. Coactions in Cofiber Sequences 8.3.2. A Diagram Lemma. 8.3.3. Action of \\OmegaY on F. 8.4. Mayer-Vietoris Sequences 8.5. The Operation of Paths 8.6. Fubini Theorems 8.7. Iterated Fibers and Cofibers 8.8. Group Actions 8.8.1. G-Spaces and G-Maps 8.8.2. Homotopy Theory of Group Actions. 8.8.3. Homotopy Colimits of Pointed G-Actions. Chapter 9 Topics and Examples 9.1. Homotopy Type of Joins and Products 9.1.1. The Join of Two Spaces. 9.1.2. Splittings of Products. 9.1.3. Products of Mapping Cones 9.1.4. Whitehead Products 9.2. H-Spaces and co-H-Spaces 9.2.1. H-Spaces 9.2.2. Co-H-Space 9.2.3. Maps from Co-H-Spaces to H-Spaces 9.3. Unitary Groups and Their Quotients 9.3.1. Orthogonal, Unitary and Symplectic Groups 9.3.2. Topology of Unitary Groups and Their Quotients 9.3.3. Cellular Structure for Unitary Groups. 9.4. Cone Decompositions 9.4.1. Cone Decompositions 9.4.2. Cone Decompositions of Products. 9.4.3. Boundary Maps for Products 9.4.4. Generalized CW Complexes 9.5. Introduction to Phantom Maps 9.5.1. Maps out of Telescopes 9.5.2. Inverse Limits and lim\' for Groups. 9.5.3. Mapping into a Limit. 9.6. G. W. Whitehead\'s Homotopy Pullback Square 9.7. Lusternik-Schnirelmann Category 9.7.1. Basics of Lusternik-Schnirelmann Category 9.7.2. Lusternik-Schnirelmann Category of CW Complexes 9.7.3. The Ganea Criterion for L-S Category 9.7.4. Category and Products 9.8. Additional Problems and Projects Chapter 10 Model Categories 10.1. Model Categories 10.2. Left and Right Homotopy 10.3. The Homotopy Category of a Model Category 10.4. Derived Functors and Quillen Equivalence 10.4.1. Derived Functors 10.4.2. Quillen Equivalence of Model Categories 10.5. Homotopy Limits and Colimits 10.5.1. A Model Structure for Diagram Categories. 10.5.2. Homotopy Colimit. Part 3 Four Topological Inputs Chapter 11 The Concept of Dimension in Homotopy Theory 11.1. Induction Principles for CW Complexes 11.1.1. Attaching One More Cell. 11.1.2. Composing Infinitely Many Homotopies 11.2. n-Equivalences and Connectivity of Spaces 11.2.1. n-Equivalences 11.3. Reformulations of n-Equivalences 11.3.1. Equivalence of the (a) Parts 11.3.2. Equivalence of Parts (2) (a) and (2) (b). 11.3.3. Proof that Part (2) (b) Implies Part (3) (b). 11.3.4. Proof that Part (3) (b) Implies Part (1) (b). 11.4. The J. H. C. Whitehead Theorem 11.5. Additional Problems Chapter 12 Subdivision of Disks 12.1. The Seifert-Van Kampen Theorem 12.2. Simplices and Subdivision 12.2.1. Simplices and Their Boundaries 12.2.2. Finite Simplicial Complexes 12.2.3. Barycentric Subdivision. 12.3. The Connectivity of Xn ---> X 12.4. Cellular Approximation of Maps 12.5. Homotopy Colimits and n-Equivalences 12.5.1. Homotopy Pushouts. 12.5.2. Telescope Diagrams 12.6. Additional Problems and Projects Chapter 13 The Local Nature of Fibrations 13.1. Maps Homotopy Equivalent to Fibrations 13.1.1. Weak Fibrations. 13.1.2. Homotopy Pullbacks and Weak Fibrations 13.1.3. Weak Homotopy Lifting 13.2. Local Fibrations Are Fibrations 13.3. Gluing Weak Fibrations 13.3.1. Tabs and Glue. 13.3.2. Gluing Weak Fibrations with Tabs. 13.4. The First Cube Theorem Chapter 14 Pullbacks of Cofibrations 14.1. Pullbacks of Cofibrations 14.2. Pullbacks of Well-Pointed Spaces 14.3. The Second Cube Theorem Chapter 15 Related Topics 15.1. Locally Trivial Bundles 15.1.1. Bundles and Fibrations. 15.1.2. Example: Projective Spaces 15.2. Covering Spaces 15.2.1. Unique Lifting 15.2.2. Coverings and the Fundamental Group 15.2.3. Lifting Criterion. 15.2.4. The Fundamental Group of S^1. 15.3. Bundles Built from Group Actions 15.3.1. Local Sections for Orbit Spaces. 15.3.2. Stiefel Manifolds and Grassmannians 15.4. Some Theory of Fiber Bundles 15.4.1. Transition Functions. 15.4.2. Structure Groups 15.4.3. Change of Fiber and Principal Bundles. 15.5. Serre Fibrations and Model Structures 15.5.1. Serre Fibrations. 15.5.2. The Serre-Quillen Model Structure. 15.6. The Simplicial Approach to Homotopy Theory 15.6.1. Simplicial Complexes. 15.6.2. The Functorial Viewpoint 15.7. Quasifibrations 15.8. Additional Problems and Projects Part 4 Targets as Domains, Domains as Targets Chapter 16 Constructions of Spaces and Maps 16.1. Skeleta of Spaces 16.1.1. Formal Properties of Skeleta. 16.1.2. Construction of n-Skeleta 16.2. Connectivity and CW Structure 16.2.1. Cells and n-Equivalences 16.2.2. Connectivity and Domain-Type Constructions 16.3. Basic Obstruction Theory 16.4. Postnikov Sections 16.5. Classifying Spaces and Universal Bundles 16.5.1. The Simple Construction. 16.5.2. Fixing the Topology 16.5.3. Using EG for EH. 16.5.4. Discrete Abelian Torsion Groups. 16.5.5. What do Classifying Spaces Classify? 16.6. Additional Problems and Projects Chapter 17 Understanding Suspension 17.1. Moore Paths and Loops 17.1.1. Spaces of Measured Paths 17.1.2. Composing Infinite Collections of Homotopies 17.2. The Free Monoid on a Topological Space 17.2.1. The James Construction 17.2.2. The Algebraic Structure of the James Construction 17.3. Identifying the Suspension Map 17.4. The Freudenthal Suspension Theorem 17.5. Homotopy Groups of Spheres and Wedges of Spheres 17.6. Eilenberg-Mac Lane Spaces 17.6.1. Maps into Eilenberg-Mac Lane Spaces 17.6.2. Existence of Eilenberg-Mac Lane Spaces 17.7. Suspension in Dimension 1 17.8. Additional Topics and Problems 17.8.1. Stable Phenomena 17.8.2. The James Splitting 17.8.3. The Hilton-Milnor Theorem Chapter 18 Comparing Pushouts and Pullbacks 18.1. Pullbacks and Pushouts 18.1.1. The Fiber of $\\psi$: Q ---> D 18.1.2. Ganea\'s Fiber-Cofiber Construction. 18.2. Comparing the Fiber of f to Its Cofiber 18.3. The Blakers-Massey Theorem 18.4. The Delooping of Maps 18.4.1. The Connectivity of Looping 18.4.2. The Kernel and Cokernel of Looping 18.5. The n-Dimensional Blakers-Massey Theorem 18.5.1. Blakers-Massey Theorem for n-Cubes 18.5.2. Recovering X from \\Sigma X. 18.6. Additional Topics, Problems and Projects 18.6.1. Blakers-Massey Exact Sequence of a Cofibration 18.6.2. Exact Sequences of Stable Homotopy Groups 18.6.3. Simultaneously Cofiber and Fiber Sequences 18.6.4. The Zabrodsky Lemma 18.6.5. Problems and Projects. Chapter 19 Some Computations in Homotopy Theory 19.1. The Degree of a Map S^n ---> S^n 19.1.1. The Degree of a Reflection and the Antipodal Map 19.1.2. Computation of Degree 19.2. Some Applications of Degree 19.2.1. Fixed Points and Fixed Point Free Maps 19.2.2. Vector Fields on Spheres. 19.2.3. The Milnor Sign Convention 19.2.4. Fundamental Theorems of Algebra 19.3. Maps Between Wedges of Spheres 19.4. Moore Spaces 19.5. Homotopy Groups of a Smash Product 19.5.1. Algebraic Properties of the Smash Product. 19.5.2. Nondegeneracy. 19.6. Smash Products of Eilenberg-Mac Lane Spaces 19.7. An Additional Topic and Some Problems 19.7.1. Smashing Moore Spaces 19.7.2. Problems Chapter 20 Further Topics 20.1. The Homotopy Category Is Not Complete 20.2. Cone Decompositions with Respect to Moore Spaces 20.3. First p-Torsion Is a Stable Invariant 20.3.1. Setting Up 20.3.2. Connectivity with Respect to P. 20.3.3. P-Connectivity and Moore Spaces 20.3.4. The First P-Torsion of a Smash Product 20.3.5. P-Local Homotopy Theory 20.4. Hopf Invariants and Lusternik-Schnirelmann Category 20.4.1. Berstein-Hilton Hopf Invariants 20.4.2. Stanley\'s Theorems on Compatible Sections 20.5. Infinite Symmetric Products 20.5.1. The Free Abelian Monoid on a Space 20.5.2. Symmetric Products of Cofiber Sequences 20.5.3. Some Examples. 20.5.4. Symmetric Products and Eilenberg-Mac Lane Spaces. 20.6. Additional Topics, Problems and Projects 20.6.1. Self-Maps of Projective Spaces. 20.6.2. Fiber of Suspension and Suspension of Fiber 20.6.3. Complexes of Reduced Product Type. 20.6.4. Problems and Projects Part 5 Cohomology and Homology Chapter 21 Cohomology 21.1. Cohomology 21.1.1. Represented Ordinary Cohomology 21.1.2. Cohomology Theories. 21.1.3. Cohomology and Connectivity. 21.1.4. Cohomology of Homotopy Colimits. 21.1.5. Cohomology for Unpointed Spaces 21.2. Basic Computations 21.2.1. Cohomology and Dimension. 21.2.2. Suspension Invariance 21.2.3. Exact Sequences 21.2.4. Cohomology of Projective Spaces 21.3. The External Cohomology Product 21.4. Cohomology Rings 21.4.1. Graded R-Algebras 21.4.2. Internalizing the Exterior Product 21.4.3. R-Algebra Structure 21.5. Computing Algebra Structures 21.5.1. Products of Spheres. 21.5.2. Bootstrapping from Known Cohomology. 21.5.3. Cohomology Algebras for Projective Spaces 21.6. Variation of Coefficients 21.6.1. Universal Coefficients 21.7. A Simple Kunneth Theorem 21.8. The Brown Representability Theorem 21.8.1. Representing Homotopy Functors 21.8.2. Representation of Cohomology Theories 21.8.3. Representing a Functor on Finite Complexes 21.9. The Singular Extension of Cohomology 21.10. An Additional Topic and Some Problems and Projects 21.10.1. Cohomology of BZ/n. 21.10.2. Problems and Projects Chapter 22 Homology 22.1. Homology Theories 22.1.1. Homology Theories 22.1.2. Homology and Homotopy Colimits. 22.1.3. The Hurewicz Theorem. 22.1.4. Computation 22.2. Examples of Homology Theories 22.2.1. Stabilization of Maps. 22.2.2. Ordinary Homology. 22.2.3. Infinite Loop Spaces and Homology 22.3. Exterior Products and the Kunneth Theorem for Homology 22.3.1. The Exterior Product in Homology 22.4. Coalgebra Structure for Homology 22.5. Relating Homology to Cohomology 22.5.1. Pairing Cohomology with Homology 22.5.2. Nondegeneracy 22.6. H-Spaces and Hopf Algebras 22.6.1. The Pontrjagin Algebra of an H-Space 22.6.2. Pontrjagin and Kiinneth. 22.6.3. The Homology and Cohomology of an H-Space Chapter 23 Cohomology Operations 23.1. Cohomology Operations 23.2. Stable Cohomology Operations 23.2.1. The Same Operation in All Dimensions 23.2.2. Extending an Operation to a Stable Operation. 23.2.3. Cohomology of BZ/p. 23.3. Using the Diagonal Map to Construct Cohomology Operations 23.3.1. Overview 23.3.2. The Transformation $\\lamba$. 23.4. The Steenrod Reduced Powers 23.4.1. Unstable Relations 23.4.2. Extending the pth Power to a Stable Operation 23.5. The Adem Relations 23.5.1. Steenrod Operations on Polynomial Rings 23.5.2. The Fundamental Symmetry Relation 23.6. The Algebra of the Steenrod Algebra 23.6.1. Fundamental Properties of Steenrod Operations 23.6.2. Modules and Algebras over A. 23.6.3. Indecomposables and Bases 23.7. Wrap-Up 23.7.1. Delooping the Squaring Operation. 23.7.2. Additional Problems and Projects Chapter 24 Chain Complexes 24.1. The Cellular Complex 24.1.1. The Cellular Cochain Complex of a Space. 24.1.2. Chain Complexes and Algebraic Homology 24.1.3. Computing the Cohomology of Spaces via Chain Complexes. 24.1.4. Chain Complexes for Homology Theories 24.1.5. Uniqueness of Cohomology and Homology 24.2. Applying Algebraic Universal Coefficients Theorems 24.2.1. Constructing New Chain Complexes 24.2.2. Universal Coefficients Theorems 24.3. The General Kunneth Theorem 24.3.1. The Cellular Complexes of a Product. 24.3.2. Kunneth Theorems for Spaces. 24.4. Algebra Structures on C*(X) and C(X) 24.5. The Singular Chain Complex Chapter 25 Topics, Problems and Projects 25.1. Algebra Structures on R^n and C^n 25.2. Relative Cup Products 25.2.1. A New Exterior Cup Product 25.2.2. Lusternik-Schnirelmann Category and Products. 25.3. Hopf Invariants and Hopf Maps 25.3.1. The Hopf Invariant Is a Homomorphism. 25.3.2. The Hopf Construction 25.3.3. Hopf Invariant One 25.3.4. Generalization. 25.4. Some Homotopy Groups of Spheres 25.4.1. The Group \\pi_n+1(S^n) 25.4.2. Composition of Hopf Maps. 25.5. The Borsuk-Ulam Theorem 25.6. Moore Spaces and Homology Decomposi 25.6.1. Homology of Moore Spaces 25.6.2. Cohomology Operations in Moore Spaces 25.6.3. Maps Between Moore Spaces 25.6.4. Homology Decompositions. 25.7. Finite Generation of \\pi_n(X), and Hn(X) 25.8. Surfaces 25.9. Euler Characteristic 25.9.1. Independence of the Field 25.9.2. Axiomatic Characterization of Euler Characteristic. 25.9.3. Poincare Series 25.9.4. More Examples. 25.10. The Kunneth Theorem via Symmetric Products 25.11. The Homology Algebra of \\Omega \\Sigma X 25.12. The Adjoint \\lambda_X of id_\\omega X 25.13. Some Algebraic Topology of Fibrations 25.14. A Glimpse of Spectra 25.15. A Variety of Topics 25.15.1. Contractible Smash Products 25.15.2. Phantom Maps 25.15.3. The Serre Exact Sequence 25.15.4. The G. W. Whitehead Exact Sequences 25.15.5. Hopf Algebra Structure on the Steenrod Algebra 25.16. Additional Problems and Projects Part 6 Cohomology, Homology and Fibrations Chapter 26 The Wang Sequence 26.1. Trivialization of Fibrations 26.2. Orientable Fibrations 26.3. The Wang Cofiber Sequence 26.3.1. Fibrations over a Suspension 26.3.2. The Wang Exact Sequence 26.3.3. Proof of Theorem 26.10(a). 26.3.4. Proof of Theorem 26.10(b). 26.4. Some Algebraic Topology of Unitary Groups 26.4.1. The Cohomology of the Unitary Groups. 26.4.2. The Homology Algebra of the Unitary Groups 26.4.3. Cohomology of the Special Unitary Group 26.4.4. Cohomology of the Stiefel Manifolds 26.5. The Serre Filtration 26.5.1. The Fundamental Cofiber Sequence 26.5.2. Pullbacks over a Cone Decomposition of the Base 26.6. Additional Topics, Problems and Projects 26.6.1. Clutching 26.6.2. Orthogonal and Symplectic Groups 26.6.3. The Homotopy Groups of S^3. Chapter 27 Cohomology of Filtered Spaces 27.1. Filtered Spaces and Filtered Groups 27.1.1. Subquotients and Correspondence 27.1.2. Filtered Spaces. 27.1.3. Filtered Algebraic Gadgets. 27.1.4. Linking Topological and Algebraic Filtrations 27.1.5. The Functors Gr* and Gr* 27.1.6. Convergence 27.1.7. Indexing of Associated Graded Objects 27.2. Cohomology and Cone Filtrations 27.2.1. Studying Cohomology Using Filtrations 27.2.2. Approximating Z^n,m and B^s,n. 27.3. Approximations for General Filtered Spaces 27.3.1. Algebraic Repackaging 27.3.2. Algebraic Homology and Exact Couples 27.3.3. Topological Boundary Maps for a Filtration 27.4. Products in E1\'* (X ) 27.4.1. The Exterior Product for Z1\'*. 27.4.2. Boundary Maps for a Smash of Filtered Spaces 27.4.3. Internalizing the External Product. 27.5. Pointed and Unpointed Filtered Spaces 27.6. The Homology of Filtered Spaces 27.7. Additional Projects Chapter 28 The Serre Filtration of a Fibration 28.1. Identification of E2 for the Serre Filtration 28.1.1. Cohomology with Coefficients in Cohomology 28.2. Proof of Theorem 28.1 28.2.1. Setting Up 28.2.2. The Topological Boundary Map 28.2.3. Identifying the Differential. 28.2.4. Naturality of E2\'* 28.3. External and Internal Products 28.3.1. External Products for E*\'* (p). 28.3.2. Internalizing Using the Diagonal 28.4. Homology and the Serre Filtration 28.5. Additional Problems Chapter 29 Application: Incompressibility 29.1. Homology of Eilenberg-Mac Lane Spaces 29.1.1. Exponents for H* (K(Z/p\'\'); G). 29.1.2. The Homology Algebra H* (K(Z, 2n); Z 29.2. Reduction to Theorem 29.1 29.2.1. Compressible Maps. 29.2.2. The Reduction. I 29.2.3. Maps from QS2n+l to K(G, 2n) 29.3. Proof of Theorem 29.2 29.3.1. Reduction to the Case G = Z/p\"\'. 29.3.2. Compressibility and the Serre Filtration 29.3.3. Consequences of Membership in Fo. 29.3.4. Completing the Proof. 29.4. Consequences of Theorem 29.1 29.4.1. The Connectivity of a Finite H-Spaces 29.4.2. Sections of Fibrations over Spheres. 29.5. Additional Problems and Projects Chapter 30 The Spectral Sequence of a Filtered Space 30.1. Approximating Grs Hn (X) by E; \'n (X ) 30.1.1. Topological Description of dr. 30.1.2. The Algebraic Approach. 30.2. Some Algebra of Spectral Sequences 30.2.1. The Category of Spectral Sequences 30.2.2. Exact Couples and Filtered Modules 30.2.3. Multiplicative Structure 30.2.4. Convergence of Spectral Sequences 30.3. The Spectral Sequences of Filtered Spaces 30.3.1. Multiplicative Structures 30.3.2. Convergence 30.3.3. The Grand Conclusion. Chapter 31 The Leray-Serre Spectral Sequence 31.1. The Leray-Serre Spectral Sequence 31.1.1. The Spectral Sequences Associated to the Serre Filtration. 31.1.2. Nondegeneracy of the Algebra Structure 31.1.3. Two Relative Variants 31.1.4. The Homology Leray-Serre Spectral Sequence 31.2. Edge Phenomena 31.2.1. Edge Filtration Quotients 31.2.2. One Step Back 31.2.3. Edge Homomorphisms 31.2.4. The Transgression 31.3. Simple Computations 31.3.1. Fibration Sequences of Spheres. 31.3.2. Cohomology of Projective Spaces. 31.3.4. Rational Exterior and Polynomial Algebras 31.3.5. Construction of Steenrod Squares. 31.4. Simplifying the Leray-Serre Spectral Sequence 31.4.1. Two Simplifying Propositions. 31.4.2. The Leray-Hirsch Theorem. 31.4.3. Exact Sequences for Fibrations Involving Spheres 31.4.4. The Thom Isomorphism Theorem 31.4.5. The Serre Exact Sequence. 31.5. Additional Problems and Projects Chapter 3 Application: Bott Periodicity 32.1. The Cohomology Algebra of BU(n) 32.2. The Torus and the Symmetric Group 32.2.1. The Action of the Symmetric Group. 32.2.2. Identifying H*(BU(n)) with Symmetric Polynomials 32.2.3. The Main Theorem 32.3. The Homology Algebra of BU 32.3.1. H-Structure for BU. 32.3.2. The Diagonal of H* (BU; 7G) 32.3.3. The Pontrjagin Algebra H* (BU; Z). 32.4. The Homology Algebra of $\\Omega$SU(n) 32.5. Generating Complexes for $\\Omega$SU and BU 32.5.1. Generating Complex for BU. 32.5.2. Generating Complexes for \\OmegaSU(n) 32.6. The Bott Periodicity Theorem 32.6.1. Shuffling Special Unitary Groups. 32.6.2. Properties of the Bott Map. 32.6.3. Bott Periodicity 32.7. K-Theory 32.7.1. K-Theory and Vector Bundles 32.7.2. Cohomology Operations in K-Theory 32.8. Additional Problems and Projects Chapter 33 Using the Leray-Serre Spectral Sequence 33.1. The Zeeman Comparison Theorem 33.2. A Rational Borel-Type Theorem 33.3. Mod 2 Cohomology of K(G, n) 33.3.1. The Transgression 33.3.2. Simple Systems of Generators 33.3.3. Borel\'s Theorem. 33.3.4. Mod 2 Cohomology of Eilenberg-Mac Lane Space 33.4. Mod p Cohomology of K(G, n) 33.4.1. The mod p Path-Loop Transgression 33.4.2. Postnikov\'s Theorem 33.4.3. Mod p Cohomology of Eilenberg-Mac Lane Spaces 33.5. Steenrod Operations Generate .Ar 33.6. Homotopy Groups of Spheres 33.6.1. Finiteness for Homotopy Groups of Spheres 33.6.2. Low-Dimensional p-Torsion 33.7. Spaces Not Satisfying the Ganea Condition 33.8. Spectral Sequences and Serre Classes 33.8.1. Serre Classes 33.8.2. Some Algebra of Serre Classes 33.8.3. Serre Classes and Topology. 33.9. Additional Problems and Projects Part 7 Vistas Chapter 34 Localization and Completion 34.1. Localization and Idempotent Functors 34.1.1. Idempotent Functors 34.1.2. Homotopy Idempotent Functors 34.1.3. Simple Explorations 34.2. Proof of Theorem 34.5 34.2.1. The Shape of a Small Object Argument. 34.2.2. The Property to Be Tested. 34.2.3. The Construction 34.2.4. Connectivity of Lf (X) 34.3. Homotopy Theory of P-Local Spaces 34.3.1. P-Localization of Spaces 34.3.2. Hands-On Localization of Simply-Connected Spaces 34.3.3. Localization of Homotopy-Theoretic Constructions 34.3.4. Recovering a Space from Its Localizations 34.4. Localization with Respect to Homology 34.4.1. Construction of h*-Localization 34.4.2. Ordinary Cohomology Theories 34.4.3. Other Connective Homology Theories 34.5. Rational Homotopy Theory 34.5.1. Suspensions and Loop Spaces 34.5.2. Sullivan Model 34.5.3. The Lie Model. 34.5.4. Elliptic and Hyperbolic 34.5.5. Lusternik-Schnirelmann Category of Rational Spaces 34.6. Further Topics 34.6.1. The EHP Sequence 34.6.2. Spheres Localized at P. 34.6.3. Regular Primes Chapter 35 Exponents for Homotopy Groups 35.1. Construction of a 35.1.1. Deviation 35.1.2. Deviation and Lusternik-Schnirelmann Category 35.1.3. Deviation and Ganea Fibrations. 35.1.4. Compositions of Order p. 35.1.5. Definition of a. 35.2. Spectral Sequence Computations 35.2.1. The Dual of the Bockstein 35.2.2. The Homology Algebra of f2(S^3(3)). 35.2.3. The Homology Algebra of f l2 (S3 (3) ) 35.2.4. The Homology Algebra H*(\\OmegaS2p+1{p}). 35.3. The Map \\lambda 35.4. Proof of Theorem 35.3 35.4.1. The Map Induced by the Hopf Invariant 35.4.2. Finishing the Argument 35.5. Nearly Trivial Maps Chapter 36 Classes of Spaces 36.1. A Galois Correspondence in Homotopy Theory 36.2. Strong Resolving Classes 36.2.1. Manipulating Classes of Spaces. 36.2.2. Closure under Finite-Type Wedges 36.2.3. Desuspension in Resolving Classes 36.2.4. Spherical Resolvability of Finite Complexes 36.3. Closed Classes and Fibrations 36.3.1. Cellular Inequalities 36.3.2. Closed Classes and Fibration Sequences. 36.3.3. E. Dror Farjoun\'s Theorem 36.4. The Calculus of Closed Classes 36.4.1. Fibers and Cofibers 36.4.2. Loops and Suspensions 36.4.3. Adjunctions 36.4.4. A Cellular Blakers-Massey Theorem Chapter 37 Miller\'s Theorem 37.1. Reduction to Odd Spheres 37.1.1. From Odd Spheres to Wedges of Spheres. 37.1.2. Vanishing Phantoms 37.1.3. Non-Simply-Connected Targets 37.2. Modules over the Steenrod Algebra 37.2.1. Projective ,A-Modules 37.2.2. Homological Algebra. 37.2.3. The Functor T 37.3. Massey-Peterson Towers 37.3.1. Relating Algebras and Modules 37.3.2. Topologizing Modules and Resolution 37.3.3. The Groups E2X, Y). 37.3.4. A Condition for the Omniscience of Cohomology 37.4. Extensions and Consequences of Miller\'s Theorem 37.4.1. The Sullivan Conjecture. 37.4.2. BZ/p-Nullification 37.4.3. Neisendorfer Localization 37.4.4. Serre\'s Conjecture Appendix A Some Algebra A.1. Modules, Algebras and Tensor Products A.1.1. Modules A.1.2. Bilinear Maps and Tensor Products A.1.3. Algebras A.2. Exact Sequences A.3. Graded Algebra A.3.1. Decomposables and Indecomposable A.4. Chain Complexes and Algebraic Homology A.4.1. Homology of Chain Complexes. A.5. Some Homological Algebra A.5.1. Projective Resolutions and TorR A.5.2. Injective Resolutions and ExtR(? , ? A.5.3. Algebraic Kunneth and Universal Coefficients Theorems A.6. Hopf Algebras A.6.1. Coalgebras A.6.2. Hopf Algebras. A.6.3. Dualization of Hopf Algebras A.7. Symmetric Polynomials A.8. Sums, Products and Maps of Finite Type A.9. Ordinal Numbers Bibliography Index of Notation Index