دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2nd ed.
نویسندگان: Stanisław Gawiejnowicz
سری: Monographs in Theoretical Computer Science. An EATCS Series
ISBN (شابک) : 9783662593615, 9783662593622
ناشر: Springer Berlin Heidelberg;Springer
سال نشر: 2020
تعداد صفحات: 535
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 4 مگابایت
کلمات کلیدی مربوط به کتاب مدل ها و الگوریتم های برنامه ریزی وابسته به زمان: علوم کامپیوتر، تئوری محاسبات، بهینه سازی، تحقیق در عملیات/نظریه تصمیم گیری
در صورت تبدیل فایل کتاب Models and Algorithms of Time-Dependent Scheduling به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مدل ها و الگوریتم های برنامه ریزی وابسته به زمان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این یک مطالعه جامع از مسائل مختلف زمان بندی وابسته به زمان در
محیط های تک، موازی و ماشین اختصاصی است. نویسنده علاوه بر
مسائل پیچیدگی و الگوریتمهای دقیق یا اکتشافی که معمولاً در
کتابهای زمانبندی ارائه میشود، موضوعات پیشرفتهتری مانند
روشهای ماتریسی در زمانبندی وابسته به زمان، زمانبندی وابسته
به زمان با دو معیار و زمانبندی دو عاملی وابسته به زمان را
نیز در بر میگیرد. .
خواننده باید با مفاهیم اساسی حساب دیفرانسیل و انتگرال،
ریاضیات گسسته و نظریه بهینه سازی ترکیبی آشنا باشد، در حالی که
کتاب مطالب مقدماتی در مورد نظریه الگوریتم ها، مسائل NP-کامل،
و مبانی نظریه زمان بندی ارائه می دهد. نویسنده شامل مثالها،
شکلها و جداول متعدد، کلاسهای متفاوتی از الگوریتمها را با
استفاده از کد شبه ارائه میکند، تمام فصلها را با کتابشناسی
گسترده تکمیل میکند و کتاب را با نمادها و نمایههای موضوعی
جامع میبندد.
ویرایش قبلی کتاب بر روی پیچیدگی محاسباتی مسائل زمانبندی
وابسته به زمان در این نسخه، نویسنده بر مدلهای زمانهای
پردازش کار وابسته به زمان و الگوریتمهایی برای حل مسائل
زمانبندی وابسته به زمان تمرکز میکند. این کتاب برای محققانی
که روی زمانبندی، پیچیدگی مسئله، بهینهسازی، الگوریتمهای
اکتشافی و جستجوی محلی کار میکنند مناسب است.
This is a comprehensive study of various time-dependent
scheduling problems in single-, parallel- and
dedicated-machine environments. In addition to complexity
issues and exact or heuristic algorithms which are typically
presented in scheduling books, the author also includes more
advanced topics such as matrix methods in time-dependent
scheduling, time-dependent scheduling with two criteria and
time-dependent two-agent scheduling.
The reader should be familiar with the basic notions of
calculus, discrete mathematics and combinatorial optimization
theory, while the book offers introductory material on theory
of algorithms, NP-complete problems, and the basics of
scheduling theory. The author includes numerous examples,
figures and tables, he presents different classes of
algorithms using pseudocode, he completes all chapters with
extensive bibliographies, and he closes the book with
comprehensive symbol and subject indexes.
The previous edition of the book focused on computational
complexity of time-dependent scheduling problems. In this
edition, the author concentrates on models of time-dependent
job processing times and algorithms for solving
time-dependent scheduling problems. The book is suitable for
researchers working on scheduling, problem complexity,
optimization, heuristics and local search algorithms.
Preface References Preface to the first edition Contents Part I FUNDAMENTALS 1 Preliminaries 1.1 Mathematical notation and inference rules 1.1.1 Sets and vectors 1.1.2 Sequences 1.1.3 Functions 1.1.4 Logical notation and inference rules 1.1.5 Other notation 1.2 Basic definitions and results 1.2.1 Elementary lemmas 1.2.2 Graph theory definitions 1.2.3 Mean value theorems 1.2.4 Priority-generating functions 1.2.5 Bi-criteria optimization definitions Bibliographic notes Mathematical notation and inference rules Basic definitions and results References Mathematical notation and inference rules Basic definitions and results 2 Problems and algorithms 2.1 Decision and optimization problems 2.1.1 Encoding schemes 2.1.2 Undecidable and decidable problems 2.2 Basic concepts related to algorithms 2.2.1 Time and space complexity of algorithms 2.2.2 Pseudo-code of algorithms 2.2.3 Polynomial-time algorithms 2.2.4 Strongly and weakly polynomial-time algorithms 2.2.6 Pseudo-polynomial algorithms 2.2.7 Offline algorithms vs. online algorithms 2.3 Main types of exact algorithms 2.3.1 Enumeration algorithms 2.3.2 Branch-and-bound algorithms 2.3.3 Dynamic programming algorithms 2.4 Main types of approximation algorithms 2.4.1 Approximation algorithms 2.4.2 Approximation schemes 2.5 Main types of heuristic algorithms 2.5.1 Heuristic algorithms 2.5.2 Greedy algorithms 2.5.3 Local search algorithms 2.5.4 Meta-heuristic algorithms Bibliographic notes Decision and optimization problems Basic concepts related to algorithms Main types of exact algorithms Main types of approximation algorithms Main types of heuristic algorithms References Decision and optimization problems Basic concepts related to algorithms Main types of exact algorithms Main types of approximation algorithms Main types of heuristic algorithms 3 NP-complete problems 3.1 Basic definitions and results 3.1.1 The ordinary NP-completeness 3.1.2 The strong NP-completeness 3.1.3 Coping with NP-completeness 3.2 NP-complete problems 3.2.1 Additive NP-complete problems 3.2.2 Multiplicative Bibliographic notes References Basic definitions and results Additive NP-complete problems Multiplicative NP-complete problems Part II SCHEDULING MODELS 4 The classical scheduling theory 4.1 Models and problems of the scheduling theory 4.1.1 Scheduling models 4.1.2 Scheduling problems 4.2 Basic assumptions of the classical scheduling theory 4.3 Formulation of classical scheduling problems 4.3.1 Parameters of the set of jobs 4.3.2 Parameters of the set of machines 4.3.3 Parameters of the set of resources 4.4 The notion of schedule 4.4.1 The presentation of schedules 4.4.2 Parameters of job in a schedule 4.4.3 Types of schedules 4.5 The criteria of schedule optimality 4.6 Notation of scheduling problems Bibliographic notes References 5 The modern scheduling theory 5.1 Main directions in the modern scheduling theory 5.1.1 Scheduling multiprocessor tasks 5.1.2 Scheduling on machines with variable processing speeds 5.1.3 Scheduling jobs with variable processing times 5.2 Main models of variable job processing times 5.2.1 Models of position-dependent job processing times Notation of position-dependent scheduling problems Example results on position-dependent job scheduling 5.2.2 Models of controllable job processing times Notation of controllable scheduling problems Example results on controllable job scheduling Bibliographic notes Scheduling multiprocessor tasks Resource-dependent scheduling Scheduling on machines with variable speed Variable job processing times Position-dependent job scheduling problems Controllable job scheduling problems References Scheduling multiprocessor tasks Resource-dependent scheduling Scheduling on machines with variable speed Scheduling jobs with variable processing times Position-dependent job scheduling problems Controllable job scheduling problems 6 The time-dependent scheduling 6.1 Terminology of time-dependent scheduling 6.2 Pure models of time-dependent processing times 6.2.1 General models of time-dependent processing times 6.2.2 Specific models of deteriorating processing times 6.2.3 Specific models of shortening processing times 6.2.4 Specific models of alterable processing times 6.3 Mixedmodels of time-dependent job processing times 6.4 Notation of time-dependent scheduling problems 6.5 Mathematical background of time-dependent scheduling 6.6 Applications of time-dependent scheduling 6.6.1 Scheduling problems with deteriorating jobs 6.6.2 Scheduling problems with shortening jobs 6.6.3 Scheduling problems with alterable jobs 6.6.4 Scheduling problems with time-dependent parameters 6.6.5 Other problems with time-dependent parameters Bibliographic notes Single machine time-dependent scheduling problems Parallel machine time-dependent scheduling problems Dedicated machine time-dependent scheduling problems References Mathematical background of time-dependent scheduling Scheduling problems with deteriorating jobs Scheduling problems with shortening jobs Scheduling problems with alterable jobs Time-dependent scheduling problems with a learning effect Scheduling problems with time-dependent parameters Other problems with time-dependent parameters Single machine time-dependent scheduling problems Parallel machine time-dependent scheduling problems Dedicated machine time-dependent scheduling problems Part III POLYNOMIAL PROBLEMS 7 Polynomial single machine problems 7.1 Minimizing the maximum completion time 7.1.1 Proportional deterioration 7.1.2 Proportional-linear deterioration 7.1.3 Linear deterioration 7.1.4 Simple non-linear deterioration 7.1.5 General non-linear deterioration 7.1.6 Proportional-linear shortening 7.1.7 Linear shortening 7.1.8 Non-linear shortening 7.1.9 Simple alteration 7.2 Minimizing the total completion time 7.2.1 Proportional deterioration 7.2.2 Proportional-linear deterioration 7.2.3 Linear deterioration 7.2.4 Simple non-linear deterioration 7.2.5 General non-linear deterioration 7.2.6 Proportional-linear shortening 7.2.7 Linear shortening 7.3 Minimizing the maximum lateness 7.3.1 Proportional deterioration 7.3.2 Proportional-linear deterioration 7.3.3 Linear deterioration 7.3.4 Simple non-linear deterioration Theorem 7.89. 7.4 Other criteria 7.4.1 Proportional deterioration Minimizing the total weighted completion time Minimizing the maximal cost Minimizing the total lateness and the maximum tardiness Minimizing the total number of tardy jobs Minimizing the total deviation of completion times 7.4.2 Proportional-linear deterioration Minimizing the total weighted completion time Minimizing the total number of tardy jobs Minimizing the maximum cost 7.4.3 Linear deterioration Minimizing the total weighted completion times Minimizing the maximal processing time Minimizing the total earliness and tardiness 7.4.4 Simple non-linear deterioration Minimizing the total weighted completion time Minimizing the total general completion time 7.4.5 General non-linear deterioration Minimizing the total weighted completion time 7.4.6 Proportional-linear shortening Minimizing the total weighted completion time Minimizing the total number of tardy jobs Theorem 7.145. Minimizing the maximal cost Theorem 7.146. 7.4.7 Linear shortening Minimizing the total weighted completion time Minimizing the total number of tardy jobs Minimizing the total earliness cost Minimizing the total earliness and tardiness References Minimizing the maximum completion time Minimizing the total completion time Minimizing the maximum lateness Other criteria 8 Polynomial parallel machine problems 8.1 Minimizing the total completion time 8.1.1 Linear deterioration 8.1.2 Simple non-linear deterioration 8.1.3 Linear shortening 8.2 Minimizing the total weighted earliness and tardiness References Minimizing the total completion time Minimizing the total weighted earliness and tardiness 9 Polynomial dedicated machine problems 9.1 Minimizing the maximum completion time 9.1.1 Proportional deterioration Flow shop problems Open shop problems 9.1.2 Proportional-linear deterioration Flow shop problems Open shop problems 9.1.3 Linear deterioration Flow shop problems 9.1.4 Simple non-linear deterioration Flow shop problems 9.1.5 Proportional-linear shortening Flow shop problems 9.2 Minimizing the total completion time 9.2.1 Proportional deterioration Flow shop problems 9.2.2 Linear deterioration Flow shop problems 9.2.3 Proportional-linear shortening Flow shop problems 9.3 Minimizing the maximum lateness 9.3.1 Proportional-linear deterioration Flow shop problems 9.3.2 Proportional-linear shortening Flow shop problems 9.4 Other criteria 9.4.1 Proportional deterioration Flow shop problems 9.4.2 Proportional-linear deterioration Flow shop problems 9.4.3 Linear deterioration Flow shop problems 9.4.4 Proportional-linear shortening Flow shop problems References Minimizing the maximum completion time Minimizing the total completion time Minimizing the maximum lateness Other criteria Part IV NP-HARD PROBLEMS 10 NP=hard single machine problems 10.1 Minimizing the maximum completion time 10.1.1 Proportional deterioration 10.1.2 Linear deterioration 10.1.3 General non-linear deterioration 10.1.4 Linear shortening 10.1.5 General non-linear shortening 10.1.6 Simple alteration 10.2 Minimizing the total completion time 10.2.1 Linear shortening 10.3 Minimizing the maximum lateness 10.3.1 Linear deterioration 10.3.2 Linear shortening 10.3.3 General non-linear shortening 10.4 Other criteria 10.4.1 Linear deterioration 10.4.2 Linear shortening 10.4.3 General non-linear shortening References Minimizing the maximum completion time Minimizing the total completion time Minimizing the maximum lateness Other criteria 11 NP-hard parallel machine problems 11.1 Minimizing the maximum completion time 11.1.1 Proportional deterioration 11.1.2 Linear deterioration 11.1.3 Linear shortening 11.2 Minimizing the total completion time 11.2.1 Proportional deterioration 11.2.2 Linear deterioration 11.3 Other criteria 11.3.1 Proportional deterioration 11.3.2 Linear deterioration References Minimizing the maximum completion time Minimizing the total completion time Other criteria 12 NP-hard dedicated machine problems 12.1 Minimizing the maximum completion time 12.1.1 Proportional deterioration Flow shop problems Open shop problems Job shop problems 12.1.2 Linear deterioration Flow shop problems Open shop problems Job shop problems 12.2 Minimizing the total completion time Flow shop problems 12.3 Minimizing the maximum lateness 12.3.1 Proportional deterioration Flow shop problems Open shop problems 12.3.2 Linear deterioration Flow shop problems References Minimizing the maximum completion time Minimizing the total completion time Minimizing the maximum lateness Part V ALGORITHMS 13 Exact algorithms 13.1 Preliminaries 13.2 Exact algorithms for single machine problems 13.2.1 Minimizing the maximum completion time Linear deterioration General non-linear deterioration Simple alteration 13.2.2 Minimizing the total completion time General non-linear deterioration Linear shortening 13.2.3 Minimizing the maximum lateness Linear deterioration 13.2.4 Other criteria Linear deterioration General non-linear deterioration 13.3 Exact algorithms for parallel machine problems 13.3.1 Minimizing the maximum completion time 13.3.2 Minimizing the total completion time Proportional deterioration Simple non-linear deterioration 13.4 Exact algorithms for dedicated machine problems 13.4.1 Minimizing the maximum completion time Proportional deterioration Linear deterioration 13.4.2 Minimizing the total completion time Proportional deterioration Proportional-linear deterioration Linear deterioration 13.4.3 Other criteria Proportional deterioration Proportional-linear shortening References Exact algorithms for single machine problems Exact algorithms for parallel machine problems Exact algorithms for dedicated machine problems 14 Approximation algorithms and schemes 14.1 Preliminaries 14.2 Minimizing the maximum completion time 14.2.1 Proportional deterioration Single machine problems Parallel machine problems Dedicated machine problems 14.2.2 Linear deterioration Parallel machine problems 14.2.3 General non-linear deterioration Single machine problems 14.2.4 Linear shortening Parallel machine problems 14.2.5 General non-linear shortening Single machine problems Parallel machine problems 14.3 Minimizing the total completion time Single machine problems Parallel machine problems 14.4 Other criteria 14.4.1 Proportional deterioration 14.4.2 Proportional-linear deterioration References Preliminaries Minimizing the maximum completion time Minimizing the total completion time Other criteria 15 Greedy algorithms based on signatures 15.1 Preliminaries 15.1.1 Problem formulation 15.1.2 Definition of signatures 15.2 Basic properties of signatures 15.3 The first greedy algorithm 15.3.1 Formulation 15.3.2 Computational experiments 15.4 Signatures of regular sequences 15.5 The second greedy algorithm 15.5.1 Arithmetic sequences 15.5.2 Geometric sequences 15.5.3 Arbitrary sequences References 16 Heuristic algorithms 16.1 Preliminaries 16.2 Minimizing the maximum completion time 16.2.1 Linear deterioration Parallel machine problems 16.2.2 General non-linear deterioration 16.2.3 Linear shortening Single machine problems 16.3 Minimizing the total completion time 16.3.1 Proportional deterioration Parallel machine problems Dedicated machine problems 16.3.2 Linear deterioration Single machine problems Dedicated machine problems 16.3.3 Linear shortening Single machine problems 16.4 Minimizing the maximum lateness 16.4.1 Linear deterioration Single machine problems 16.4.2 General non-linear deterioration Single machine problems 16.5 Other criteria 16.5.1 Proportional deterioration Single machine problems Parallel machine problems 16.5.2 Linear deterioration Single machine problems Parallel machine problems 16.5.3 General non-linear deterioration Single machine problems 16.5.4 Linear shortening Single machine problems References Minimizing the maximum completion time Minimizing the total completion time Minimizing the maximum lateness Other criteria 17 Local search and meta-heuristic algorithms 17.1 Preliminaries 17.1.1 Basic definitions 17.1.2 General concepts in local search 17.1.3 Pros and cons of local search algorithms 17.2 Main types of local search algorithms 17.2.1 Iterative improvement 17.2.2 Steepest descent search 17.3 Main types of meta-heuristic algorithms 17.3.1 Simulated annealing 17.3.2 Tabu search 17.3.3 Genetic algorithms 17.3.4 Evolutionary algorithms 17.3.5 Ant colony optimization 17.3.6 Particle swarm optimization 17.4 Local search time-dependent scheduling algorithms 17.4.1 Iterative improvement algorithms 17.4.2 Steepest descent search algorithms Experimental evaluation of Algorithms 17.12 and 17.10 17.5 Meta-heuristic time-dependent scheduling algorithms 17.5.1 Simulated annealing algorithms 17.5.2 Tabu search algorithms 17.5.3 Genetic algorithms 17.5.4 Evolutionary algorithms 17.5.5 Ant colony optimization algorithms 17.5.6 Particle swarm optimization algorithms References General concepts in local search General concepts in meta-heuristic algorithms Local search time-dependent scheduling algorithms Meta-heuristic time-dependent scheduling algorithms Part VI ADVANCED TOPICS 18 Time-dependent scheduling under precedence constraints 18.1 Proportional deterioration 18.1.1 Chain precedence constraints 18.1.2 Series-parallel precedence constraints 18.1.3 Arbitrary precedence constraints 18.2 Proportional-linear deterioration 18.3 Linear deterioration 18.3.1 Preliminaries 18.3.2 Chain precedence constraints 18.3.3 Tree and forest precedence constraints 18.3.4 Series-parallel precedence constraints 18.4 Proportional-linear shortening 18.4.1 Chain precedence constraints 18.4.2 Series-parallel precedence constraints 18.5 Linear shortening 18.5.1 Chain precedence constraints 18.5.2 Tree precedence constraints 18.5.3 Series-parallel precedence constraints References Proportional deterioration Proportional-linear deterioration Linear deterioration Proportional-linear shortening Linear shortening 19 Matrix methods in time-dependent scheduling 19.1 Preliminaries 19.2 The matrix approach 19.2.1 The matrix form of single machine problems 19.2.2 The matrix form of parallel machine problems 19.3 Minimizing the lp norm 19.3.1 Problem formulation 19.3.2 Injectivity and convexity 19.3.3 Bounded logarithmic growth 19.3.4 Asymmetricity 19.3.5 V-shapeness 19.4 Equivalent scheduling problems 19.4.1 The initial problem Single machine initial problems Parallel machine initial problems 19.4.2 The transformed problem Single machine transformed problems Parallel machine transformed problems 19.4.3 Properties of equivalent problems 19.5 Conjugate scheduling problems 19.5.1 The initial problem 19.5.2 The composite problem 19.5.3 The conjugate problem 19.5.4 Properties of conjugate problems 19.6 Isomorphic scheduling problems 19.6.1 Generic problem 19.6.2 The (γ,θ)-reducibility 19.6.3 Algorithms for isomorphic problems Preliminary definitions Polynomial algorithms for isomorphic problems Approximation algorithms for isomorphic problems Examples of single machine isomorphic scheduling problems Examples of dedicated machine isomorphic scheduling problems References The matrix approach Minimizing the lp norm Equivalent scheduling problems Conjugate scheduling problems Isomorphic scheduling problems 20 Bi-criteria time-dependent scheduling 20.1 Preliminaries 20.1.1 Problems formulation 20.1.2 Preliminary results 20.2 Pareto optimality 20.2.1 Basic definitions 20.2.2 Main results 20.3 Scalar optimality 20.3.1 Basic definitions 20.3.2 Main results 20.4 Computational experiments 20.5 Other results References Pareto optimality Scalar optimality 21 New topics in time-dependent scheduling 21.1 Time-dependent scheduling on machines with limited availability 21.1.1 Preliminaries 21.1.2 Proportional deterioration 21.1.3 Linear deterioration 21.2 Time-dependent two-agent scheduling 21.2.1 Preliminaries 21.2.2 Proportional deterioration 21.2.3 Proportional-linear deterioration 21.2.4 Linear deterioration 21.2.5 Proportional-linear shortening 21.3 Time-dependent scheduling with job rejection 21.3.1 Preliminaries 21.3.2 Main results 21.4 Time-dependent scheduling with mixed job processing times 21.4.1 Preliminaries 21.4.2 Main results Minimizing the maximum completion time Minimizing the total completion time Minimizing the total weighted completion time Minimizing the maximum lateness 21.5 Time-dependent scheduling games 21.5.1 Preliminaries 21.5.2 Main results References Time-dependent scheduling on machines with limited availability Two-agent time-dependent scheduling Time-dependent scheduling with job rejection Time-dependent scheduling with mixed job processing times Time-dependent scheduling games Part A APPENDIX A Open time-dependent scheduling problems A.1 Open single machine scheduling problems A.2 Open parallel machine scheduling problems A.3 Open dedicated machine scheduling problems References Open single machine scheduling problems Open parallel machine scheduling problems Open dedicated machine scheduling problems List of Algorithms List of Figures List of Tables Symbol Index Subject Index